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IVAN BARRAGAN

AUTOPILOT DIDN'T REACT OR GIVE ANY WARNINGS, SO IVAN TOOK OVER AND APPLIED THE BRAKES.

HE DOESN'T THINK AUTOPILOT HAD A CHANCE TO REACT, AS THE ACCIDENT WAS TOO FAR IN THE DISTANCE. I

.




We Don’t Know
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Because We Don’t Know How
Black Box ML Models Work



Chandler, Arizona: Waymo
Collision

Tempe, Arizona: Uber Hit And
Run Mountain View, California:
Tesla Model X Crash



Driver killed in self-driving
car accident for first time

Natio Jun 30, 2016 5:24 PM EST

“The high ride height of the trailer of the truck combined with its
positioning across the road and the rare circumstances of the
impact caused the Model S to pass under the trailer” - Tesla




How Do we Train Deep Neural Networks?

Discriminative model vs. Generative model
p(y|x) Py, x)

Training with backpropagation
Dataset to minimize the error

training_loss
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https://news.microsoft.com/source/features/ai/azure-responsible-machine-learning/



Is That Enough?

Uncertainty &

Calibration
Explainability+ Law & Ethics
OoO0D Detc.ectu.)n & Privacy
Generalization
Adversarial Bias & Fairness:

Attacks Testing & Mitigation



Application 1 (NLP)

Sentence Completion & Review Generation



How Has GPT3 Been Trained?

Filter tokens
(remove sensitive
info)

Collect Data Tokenize
(websites, books, |———* (word, sentence,
forums, etc.) letter -> number)
5008B tokens
Quantity Weight in Epochs elapsed when
Dataset (tokens)  training mix  training for 300B tokens
Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 29
Booksl 12 billion 8% 1.9
Books2 55 billion 8% 043
34

Wikipedia 3 billion 3%

Pre-train to predict
the next word

Fine-tune for
specific tasks

A transformer
Decoder-only archi.
175 B parameters
2048-long tokens

Translation,
summarization, Q&A



political

cultural

nde [Qisability
ags b I a Srehglous
language exual

educational

Social bias :> Algorithmic bias
(historical bias, life bias, etc.) (dataset bias, model bias, etc.)



Generative models in Vision



Application 2 (Robotics)

Perception to Decision-Making



ge: https://www.youtube.com/watch




Sources of Uncertainty

Internal Sources

Model
Limitations

Hardware
Limitations

External Sources

Dynamic

Objects

Domain
Shifts
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Sources of Uncertainty

Hardware
Limitations
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Sources of Uncertainty

Model

Limitations
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Sources of Uncertainty
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Sources of Uncertainty
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Sources of Uncertainty

Hardware Model Partial

Limitations Limitations Observability

Dynamic
Objects

Duringtraining |

At deployment

Domain
Shifts
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Types of Uncertainties

Known Unknowns
(Aleatoric Uncertainty)

Unknown Unknowns
(Epistemic Uncertainty)

—— Mean prediction

+2SD of prediction "

Epistemic Uncertainty ——=

(missing data)

Aleatoric Uncertainty
(noisy data)

Epistemic Uncertainty
(forecasting)



Known Unknowns (a.k.a. Aleatoric Uncertainty)

Learned Elevation Map

Aleatoric Uncertaint
(Known Unknowns)
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Unknown Unknowns (a.k.a. Epistemic Uncertainty)

$3 billion mission!
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Unknown Unknowns (a.k.a. Epistemic Uncertainty)

uncertainty on weights




It’s okay to not know something.
However, we ought to know what we
don’t know.
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Application 3 (Healthcare)

Personalized Healthcare
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Heart Rate

“972 .56

Clinicians need to understand!
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Patient wears a Data flows from Data flows from Garmin and Activity and glucose data
physical activity Garmin and Dexcom Dexcom apps to the cloud can be visualized and
tracker devices to their & reviewed by providers on
and CGM respective apps Data in the cloud is pulled into their office computers
local server, processed, and
input to TIDE
( ] L] L]
Activity-Glucose Multimodal TIDE Dashboard
X
S 200 ' 2%
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Adding Glycemic and Physical Activity Metrics to a Multimodal Algorithm-Enabled Decision-Support Tool for Type 1 Diabetes Care: Keys to Implementation and Opportunities
DP Zaharieva, R Senanayake, C Brown, B Watkins, G Loving, P Prahalad



Type 1 Diabetes

The 3-month avg glucose (Hb1Ac) misses important events

- Severe hyper
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Challenges

Need based
{ Modeling H Decision-Making | —¢

Instantaneous
Avg: Glucose Level

Every 5 minutes

A

h

Continuously adjust the insulin dose (x ml)




Training...



How Do we Train Deep Neural Networks?

Discriminative model vs. Generative model

p(y|x) Py, x)
Optimization
Training with backpropagation
Dataset to minimize the error
Model training_loss
- AIRCA 06—\
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Why Does a Neural Network Work

y; = activation(Q;w;x;)

I&" ()
REORAC
K
R

1) (Non)linear regression of (non)linear regressions view
2) Manifold view



Objective: Predict outputs for unknown inputs x4, given the training data
N
{xi,yi i—1-

Linear Regression: Problem
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X

y = f(x) + e,

e ~ N(0,0?%)




Linear Regression: Model
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Linear Regression: Solution 1

Ordinary Least Square (OLS)

055 = arg(;ninllellg = argyinlly - X013

ly = X6z = (y — X0) ' (y - X6)
=y'y-y' X0-0"X"y+6"X"Xx0
— yTy . 20TxTy + HTXTXH
a(—)elly —-X0|5=-2X"y+2X"'X60
By setting the derivative to zero,

22Xy +2X' X045 =0= X'y = X"X0p,¢

05 = (X' X)Xy




Linear Regression: Predictions/Querying

Now, for unknown query input x4, the output can be estimated as,

=
Yq = X0
15
10 -
>
5
prediction
01 e ground truth




Linear Regression: Solution 2
Maximum Likelihood Estimate (MLE)

Alternatively, the same 6* can be obtained by maximizing the likelihood,

Oy = arg max p(y|X,0) (maximize likelihood)
= arg max log p(y| X, 6)
= arg moin — log p(y|X,0) (minimize negative log likelihood (NLL))
= arg mgn(y - X0)'(y — X6)
= argmin ||y — X6 3

0%
— YOLS

p(y|X,0) —————— exp =y —X@0) (o71) “(y — X0)



Linear Regression: Solution 3
Maximum-A-Posterior (MAP)

Alternatively, 8* can be obtained by maximizing the the posterior
distribution (i.e. the mode of the posterior distribution),

H*MAP = arg max p(OIX y) maximum-a-posteriori (MAP)
)

— argmax p(y|X,0)p(6)
0 p(y)
= argmax p(y| X, 0)p(6)

>

= arg maxlog p(y|X, @) + log p(8)
0 ~ N——

"

log likelihood log prior

likelihood prior
TN S
p(y|X, @) x p(0)

p(@|X.,y) —_
N, e’ ply)
posterior e

marginal likelihood



Linear Regression: Solution 3
Maximum-A-Posterior (MAP)

@ The log-prior acts as a regularizer (penalizer) and prevents

over-fitting/multicollinearity

o If p(8) = N(0,031),

Opap = (X' X+ M) Xy |,

\=o?/oh

o This is equivalent to ridge regression (Tikhonov or L2 regularization)
o A/ term improves the numerical stability of the inversion

Oy = (X X) X y



Neural Networks: Manifolds View

https://colah.qgithub.io/posts/2014-03-NN-Manifolds-Topology/

activation(Q)w;x;)

e m)
// i



https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Metrics



Actual condition

Total population
=P+N

Positive (P)

Negative (N)

Confusion

Predicted condition

Predicted Positive (PP)

True positive (TP),
hit

False positive (FP),
type | error, false alarm,

overestimation

Predicted Negative
(PN)

False negative (FN),
type Il error, miss,

underestimation

True negative (TN),

correct rejection

Matrix



Actual condition

Total population
=P+N

Positive (P)

Negative (N)

Prevalence

__P
“P+N

Accuracy (ACC)

_TP+TN
~ P+N

Balanced

accuracy (BA)

_ TPR+TNR
- 2

Confusion

Predicted condition

Predicted Positive (PP)

True positive (TP),
hit

False positive (FP),
type | error, false alarm,

overestimation

Positive predictive value (PPV),
precision
TP
=pp =1-FDR

False discovery rate (FDR)

=FP_4_
=pp =1-PPV
F, score
_ 2PPVxTPR _ 2TP

=PPV+TPR — 2TP + FP + FN

Predicted Negative
(PN)

False negative (FN),
type Il error, miss,

underestimation

True negative (TN),

correct rejection

False omission rate
(FOR)
FN
=pn=1- NPV
Negative predictive
_ TN
value (NPV) = PN
=1-FOR

Fowlkes—Mallows
index (FM)
= +/PPV<TPR

Matrix

Informedness, pookmaker

informedness (BM)
=TPR+TNR -1

True positive rate (TPR), recall,
sensitivity (SEN),
probability of detection, hit rate, power

_TP _
=P =1-FNR

False positive rate (FPR),

probability of false alarm, fall-out

= FP _
=5 =1-TNR

Positive likelihood ratio (LR+)
TPR

=FP

Markedness (MK), deltaP (Ap)
= PPV + NPV -1

Matthews correlation coefficient
(MCC)
=/ TPRxTNRxPPVxNPV
—+FNRxFPRxFORxFDR

Wikipedia article has the best summary table I've seen so far

Prevalence threshold (PT)
_ VTPRXFPR-FPR
TPR—FPR

False negative rate (FNR),

miss rate
= =1-TPR

True negative rate (TNR),
specificity (SPC), selectivity
= =1-FPR

Negative likelihood ratio (LR-)

_ FNR
~ TNR

Diagnostic odds ratio (DOR)

- LR+
~[R-

Threat score (TS), critical
success index (CSl), Jaccard

: _ TP
Index = tp PN+ FP



Precision vs. Recall

Precision (TP/TP+FP): Accuracy of the positive predictions.
Recall/sensitivity (TP/TP+FN): Ability to capture/retrieve all positive samples. Useful
when missing positives is a bad thing.

F1 score: 2 X precision X recall

precision+ recall
Sometimes working with precision or recall separately makes more sense than using F1

(e.g., in a medical diagnosis, we might need to focus more on maximizing precision)
When there is an imbalance in the number of ground truth positive and negative
samples, F1 score will be biased

For different classification thresholds, we can plot the precision-recall curve. Generally, if
we decrease the classification threshold (say, from 0.5 to 0.3), TP+FP go up (something
remotely looks like a positive will now be a positive, whether correct or not). This will
increase fall positives (because false positives typically lie around 0.5) which will then
decrease precision. 1

Spam vs. ham
Cancer diagnosis

precision

v

recall



