

CSE598: Operationalizing Deep Learning: A Sociotechnical Perspective

Ransalu Senanayake

School of Computing and Augmented Intelligence Arizona State University

www.ransalu.com/lens-lab

ransalu@asu.edu

IVÁN BARRAGAN

AUTOPILOT DIDN'T REACT OR GIVE ANY WARNINGS, SO IVÁN TOOK OVER AND APPLIED THE BRAKES. HE DOESN'T THINK AUTOPILOT HAD A CHANCE TO REACT, AS THE ACCIDENT WAS TOO FAR IN THE DISTANCE.

KAPWING

PROPER BE BAD

We Don't Know

Because We Don't Know How Black Box ML Models Work

Chandler, Arizona: Waymo Collision

Tempe, Arizona: Uber Hit And Run

Mountain View, California: Tesla Model X Crash

Driver killed in self-driving car accident for first time

Nation Jun 30, 2016 5:24 PM EST

"The high ride height of the trailer of the truck combined with its positioning across the road and the rare circumstances of the impact caused the Model S to pass under the trailer" - Tesla

How Do we Train Deep Neural Networks?

Discriminative model vs. Generative model p(y|x) = p(y,x)

Training with backpropagation to minimize the error

Predicted: Husky True: Husky

Predicted: Wolf

True: Wolf

Predicted: Wolf True: Wolf

Predicted: Husky True: Husky

Predicted: Husky True: Husky

Predicted: Wolf True: Wolf

Predicted: Wolf True: Wolf

Predicted: Wolf True: Wolf

Predicted: Husky True: Wolf

Predicted: Wolf True: Wolf

Predicted: Wolf

True: Husky

Predicted: Husky True: Husky

https://news.microsoft.com/source/features/ai/azure-responsible-machine-learning/

Is That Enough?

Application 1 (NLP) Sentence Completion & Review Generation

How Has GPT3 Been Trained?

0.43

3.4

Books2

Wikipedia

55 billion

3 billion

8%

3%

Social bias (historical bias, life bias, etc.)

Generative models in Vision

Application 2 (Robotics) Perception to Decision-Making

source: https://www.youtube.com/watch?v=-Q7YM8llivU

and the state

http://vk.com/re

2015-02-27 19:38:02

During training

At deployment

source: https://www.bbc.com/news/technology-40416606, https://bearclawindustries.com/dash-cam-full-hd/

Types of Uncertainties

Known Unknowns (a.k.a. Aleatoric Uncertainty)

Unknown Unknowns (a.k.a. Epistemic Uncertainty)

Unknown Unknowns (a.k.a. Epistemic Uncertainty)

It's okay to not know something. However, we ought to know what we don't know.

Application 3 (Healthcare) Personalized Healthcare

Clinicians need to understand!

Adding Glycemic and Physical Activity Metrics to a Multimodal Algorithm-Enabled Decision-Support Tool for Type 1 Diabetes Care: Keys to Implementation and Opportunities DP Zaharieva, R Senanayake, C Brown, B Watkins, G Loving, P Prahalad

Type 1 Diabetes

The 3-month avg glucose (Hb1Ac) misses important events

Challenges

Training...

How Do we Train Deep Neural Networks?

Discriminative model vs. Generative model

 $p(y|x) \qquad \qquad p(y,x)$

Optimization

Training with backpropagation to minimize the error

Predicted: Wolf True: Wolf

Predicted: Husky True: Husky

Data

Evaluation

10k

12k

14k

8k

2k

4k

6k

Why Does a Neural Network Work So Well?

(Non)linear regression of (non)linear regressions view
Manifold view

Linear Regression: Problem

Objective: Predict outputs for unknown inputs x_q , given the training data $\{x_i, y_i\}_{i=1}^N$.

$$y = f(\mathbf{x}) + e, \quad e \sim \mathcal{N}(0, \sigma^2)$$

Linear Regression: Model

$$y = \theta_0 + \theta_1 x^{(1)} + \theta_2 x^{(3)} + \theta_3 x^{(3)} + \dots + \theta_D x^{(D)} + \epsilon$$

Linear Regression: Solution 1 Ordinary Least Square (OLS)

$$oldsymbol{ heta}_{OLS}^* = \operatorname*{argmin}_{oldsymbol{ heta}} \| \mathbf{e} \|_2^2 = \operatorname*{argmin}_{oldsymbol{ heta}} \| \mathbf{y} - X oldsymbol{ heta} \|_2^2$$

By setting the derivative to zero,

$$-2X^{\top}\mathbf{y} + 2X^{\top}X\boldsymbol{\theta}_{OLS}^* = \mathbf{0} \Rightarrow X^{\top}\mathbf{y} = X^{\top}X\boldsymbol{\theta}_{OLS}^*$$

$$\boldsymbol{\theta}^*_{OLS} = (X^{ op}X)^{-1}X^{ op}\mathbf{y}$$

Linear Regression: Predictions/Querying

Now, for unknown query input x_q , the output can be estimated as,

$$\mathbf{y}_q = X_q \boldsymbol{\theta}^*$$

Linear Regression: Solution 2 Maximum Likelihood Estimate (MLE)

Alternatively, the same $heta^*$ can be obtained by maximizing the likelihood,

$$\begin{aligned} \boldsymbol{\theta}_{ML}^* &= \arg \max_{\boldsymbol{\theta}} p(\mathbf{y}|X, \boldsymbol{\theta}) \quad (\text{maximize likelihood}) \\ &= \arg \max_{\boldsymbol{\theta}} \log p(\mathbf{y}|X, \boldsymbol{\theta}) \\ &= \arg \min_{\boldsymbol{\theta}} - \log p(\mathbf{y}|X, \boldsymbol{\theta}) \quad (\text{minimize negative log likelihood (NLL)}) \\ &= \arg \min_{\boldsymbol{\theta}} (\mathbf{y} - X \boldsymbol{\theta})^\top (\mathbf{y} - X \boldsymbol{\theta}) \\ &= \arg \min_{\boldsymbol{\theta}} \|\mathbf{y} - X \boldsymbol{\theta}\|_2^2 \\ &= \boldsymbol{\theta}_{OLS}^* \end{aligned}$$

$$p(\mathbf{y}|X,\theta) = \frac{1}{\sqrt{(2\pi)^{D+1}|\sigma^2 I|}} \exp\left(-\frac{1}{2}(\mathbf{y} - X\theta)^\top (\sigma^2 I)^{-1}(\mathbf{y} - X\theta)\right)$$

Linear Regression: Solution 3 Maximum-A-Posterior (MAP)

Alternatively, θ^* can be obtained by maximizing the the posterior distribution (i.e. the mode of the posterior distribution),

Linear Regression: Solution 3 Maximum-A-Posterior (MAP)

 The log-prior acts as a regularizer (penalizer) and prevents over-fitting/multicollinearity

• If
$$p(\theta) = \mathcal{N}(\mathbf{0}, \sigma_0^2 I)$$
,

$$\boldsymbol{\theta}_{MAP}^{*} = (X^{\top}X + \lambda I)^{-1}X^{\top}\mathbf{y}, \quad \lambda = \sigma^{2}/\sigma_{0}^{2}$$

- This is equivalent to ridge regression (Tikhonov or L2 regularization)
- λI term improves the numerical stability of the inversion

$$\theta^*_{ML} = (X^{ op}X)^{-1}X^{ op}y$$

Neural Networks: Manifolds View

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Metrics

Confusion Matrix

		Predicted condition			
	Total population = P + N	Predicted Positive (PP)	Predicted Negative (PN)		
Actual condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation		
	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection		

Confusion Matrix

		Predicted condition			
	Total population = P + N	Predicted Positive (PP)	Predicted Negative (PN)	Informedness, вооктакег informedness (BM) = TPR + TNR – 1	$\frac{\text{Prevalence threshold (PT)}}{=\frac{\sqrt{\text{TPR} \times \text{FPR}} - \text{FPR}}{\text{TPR} - \text{FPR}}}$
condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $=\frac{TP}{P}=1-FNR$	False negative rate (FNR), miss rate = $\frac{FN}{P} = 1 - TPR$
Actual	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out $= \frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity $= \frac{TN}{N} = 1 - FPR$
-	$\frac{\text{Prevalence}}{=\frac{P}{P+N}}$	Positive predictive value (PPV), precision $= \frac{TP}{PP} = 1 - FDR$	False omission rate (FOR) = $\frac{FN}{PN}$ = 1 - NPV	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR–) = $\frac{FNR}{TNR}$
	$\frac{\text{Accuracy (ACC)}}{=\frac{\text{TP} + \text{TN}}{\text{P} + \text{N}}}$	False discovery rate (FDR) = $\frac{FP}{PP}$ = 1 – PPV	Negative predictive value (NPV) = $\frac{TN}{PN}$ = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) = $\frac{LR+}{LR-}$
	Balanced accuracy (BA) = $\frac{\text{TPR} + \text{TNR}}{2}$	$F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = √PPV×TPR	Matthews correlation coefficient (MCC) =√TPR×TNR×PPV×NPV -√FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = $\frac{TP}{TP + FN + FP}$

Precision vs. Recall

- Precision (TP/TP+FP): Accuracy of the positive predictions.
- Recall/sensitivity (TP/TP+FN): Ability to capture/retrieve all positive samples. Useful when missing positives is a bad thing.
- F1 score: $2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$
- Sometimes working with precision or recall separately makes more sense than using F1 (e.g., in a medical diagnosis, we might need to focus more on maximizing precision)
- When there is an imbalance in the number of ground truth positive and negative samples, F1 score will be biased
- For different classification thresholds, we can plot the precision-recall curve. Generally, if we decrease the classification threshold (say, from 0.5 to 0.3), TP+FP go up (something remotely looks like a positive will now be a positive, whether correct or not). This will increase fall positives (because false positives typically lie around 0.5) which will then decrease precision.

Spam vs. ham Cancer diagnosis

