
Student Presentations
On RL Algorithms

Assignment 2 Part A
CSE 574

Assignment 2 Part A
CSE 574

Monte Carlo Tree Search
-Group 1

Introduction
● The Monte Carlo Tree

Search (MCTS) Algorithm
is a popular tree-based
Reinforcement Learning
Approach [1]

● States are represented as
nodes and actions are edges

● Consists of four repeated
steps:

○ Selection
○ Expansion
○ Simulation
○ Backpropagation Image from [3]

Selection
● Start from a given node
● Select child node based on tree node

policy
● Repeat until leaf node is reached
● Leaf node : Node that hasn’t been

expanded/explored yet
● Tree Policy : function used to assign

value for node selection
○ UCB is the most popular

Image from [3]

Expansion
● Expand leaf node by

randomly applying one of
the possible actions and
generating a new node

Image from [3]

Simulation

● Check if generated node is terminal state
● If yes, stop
● If no, repeat by choosing another random

action and generating another node
● Simulation also called rollout policy
● Rollout policy can be applied multiple

times to explore more space at the cost of
processing speed

Image from [3]

Backpropagation
● Reward at terminal state is

passed up along the same
path

● Nodes are updated with new
wi, si, and sp values

● Repeated for given root node
for a certain number of
simulations or certain
amount of time

● Action chosen based on best
score of child node of given
root node

Image from [3]

Pros

● Random selection enables quick navigation of large state spaces
● Tree policy supports balanced approach to exploration and exploitation
● Does not require prior knowledge of environment (model free learning)

Cons
● Can require a lot of iterations to converge to a good solution
● Performance strongly dependent on number of simulations/time allotted

Applications

● Works well in board games, most popularly known to be used in AlphaGo
● Works well for path finding and decision making in simple robots
● Has been used to make AI-powered opponents in video games [2]
● Pros mentioned before explain why it is good in these scenarios

Image from [4]

Image from [5]

References
[1] C. B. Browne et al., "A Survey of Monte Carlo Tree Search Methods," in IEEE Transactions on Computational Intelligence and
AI in Games, vol. 4, no. 1, pp. 1-43, March 2012, doi: 10.1109/TCIAIG.2012.2186810.

[2] Schrittwieser, Julian, et al. "Mastering atari, go, chess and shogi by planning with a learned model." Nature 588.7839 (2020):
604-609.

[3] Chaslot, Guillaume M. Jb, et al. "Progressive strategies for Monte-Carlo tree search." New Mathematics and Natural
Computation 4.03 (2008): 343-357.

[4] Silver, David & Huang, Aja & Maddison, Christopher & Guez, Arthur & Sifre, Laurent & Driessche, George & Schrittwieser,
Julian & Antonoglou, Ioannis & Panneershelvam, Veda & Lanctot, Marc & Dieleman, Sander & Grewe, Dominik & Nham, John &
Kalchbrenner, Nal & Sutskever, Ilya & Lillicrap, Timothy & Leach, Madeleine & Kavukcuoglu, Koray & Graepel, Thore & Hassabis,
Demis. (2016). Mastering the game of Go with deep neural networks and tree search. Nature. 529. 484-489. 10.1038/nature16961.

[5] De, Ridip & Mahapatra, Rajendra & Chakraborty, Partha Sarathi. (2016). Exploring and Expanding the World of Artificial
Intelligence. International Journal of Computer Applications. 134. 1-4. 10.5120/ijca2016907802.

Thank You!

Vanilla Policy Gradient

Group 2

Introduction

● Vanilla Policy Gradient (VPG) is a fundamental reinforcement learning algorithm used to train

agents in a trial-and-error manner.

● At a high level, VPG focuses on improving an agent's behavior over time to maximize the total

rewards it can earn in an environment.

● It achieves this by directly adjusting the agent's policy, which is like its strategy, to increase the

likelihood of taking actions that lead to higher rewards.

● VPG is a simple and intuitive approach to reinforcement learning that forms the basis for more

advanced algorithms, making it an important concept in the field.

Working

● VPG trains a stochastic policy in an on-policy way. This means that it explores by sampling actions

according to the latest version of its stochastic policy. The amount of randomness in action selection

depends on both initial conditions and the training procedure. Over the course of training, the policy

typically becomes progressively less random, as the update rule encourages it to exploit rewards that it has

already found. This may cause the policy to get trapped in local optima.

● PPO is an advancement over VPG and addresses its high variance issue by using a surrogate objective. PPO

generally outperforms VPG in terms of stability, sample efficiency, and convergence speed.

Implementation

Working

Initialization (Lines 1-2):

Initialize the policy parameters (θ) and the value function parameters (ɸ).

Main Loop (Lines 2-9):

The algorithm iterates over episodes or iterations, indexed by k.

Data Collection (Line 3):

Collect a set of trajectories (D) by running the current policy (θₖ) in the environment. Trajectories consist
of state-action pairs and rewards.

Working

Compute Rewards-to-Go (Line 4):

Compute the rewards-to-go (R) for each time step t in the trajectories. The rewards-to-go is the total
discounted reward from time step t onwards till termination for that state.

Compute Advantage Estimates (Line 5):

Using any method of advantage estimation (e.g., subtracting a value function estimate from the Q Value),
compute advantage estimates (At) based on the current value function (V = θ).

Compute Policy Gradient (Line 6):

Estimate the policy gradient (∇θ J(θ)) using the advantage estimates (At) and the log probabilities of
actions (logπ θ (a∣s)) according to the current policy. This step calculates how policy parameters should be
adjusted to maximize expected return.

Implementation

Working

Policy Update (Line 7):

Update the policy parameters using gradient ascent, typically following the standard gradient ascent rule
 (θ k+1 =θ k + α ∇ θ J(θ)), where α is the learning rate. Alternatively, another gradient ascent algorithm like
Adam can be used for the update.

Value Function Update (Line 8):

Fit value function by regression on mean-squared error: typically via some gradient descent algorithm

Iteration (Line 9):

The algorithm proceeds by iteratively collecting data, computing rewards-to-go and advantage estimates,

estimating policy gradients, updating the policy parameters, and updating the value function. This

process continues until convergence or a predefined stopping criterion is met, improving the policy to

maximize the expected return.

Pros and cons

Pros

● simple to understand and implement,

making it a good starting point for those

new to RL.

● VPG is an on-policy algorithm that can be

used for environments with either discrete

or continuous action spaces

● VPG directly optimizes the expected return

by maximizing the objective function,

making it suitable for applications where

optimizing the policy is the primary goal.

Cons

● VPG often suffers from high variance in the

policy gradients, which can lead to slow

convergence and instability during training.

● Can be stuck in local optima

● Unlike value-based methods, VPG does not

explicitly learn a value function, which can

limit its ability to generalize and estimate

the value of states.

Applications

● VPG is an on-policy algorithm.

● VPG can be used for environments with either discrete or continuous action spaces.

● The Spinning Up implementation of VPG supports parallelization with MPI.

● Vanilla Policy Gradient (VPG) and its variants find applications across a wide range of

domains due to their capability to directly learn policy parameterizations and handle

continuous action spaces. Here are some notable applications of VPG in various fields:

a. Robotics

b. Game playing

c. NLPs

d. Healthcare

e. Finance

f. Autonomous

vehicles

References

● https://spinningup.openai.com/en/latest/algorithms/vpg.html

● https://medium.com/analytics-vidhya/a-deep-dive-into-vanilla-policy-gradients-3a79a95f3334

● https://medium.com/@alancooney/vanilla-policy-gradient-from-scratch-3c9ebb4de441

https://spinningup.openai.com/en/latest/algorithms/vpg.html
https://medium.com/analytics-vidhya/a-deep-dive-into-vanilla-policy-gradients-3a79a95f3334

Thank you!

 CSE574 - Planning & Learning Methods in AI
 Soft Actor-Critic

 Group-3

28

Introduction

● Soft Actor-Critic (SAC) is an Off-Policy Maximum Entropy Deep
Reinforcement Learning with a Stochastic Actor, jointly developed by UC
Berkeley and Google.

● It is considered as one of the most efficient RL algorithms to apply to
real-world robotics.

● SAC is model-free, online, off-policy, actor-critic RL algorithm. Computes
optimal policy that maximizes both the long-term expected reward and
entropy of the policy.

29

Basic Components

● ACTOR : The actor is responsible for learning the policy.
In SAC, the policy is represented as a stochastic policy,
meaning it outputs a probability distribution over actions
for a given state.

● CRITIC : The critic estimates the state-action value
function (Q-function). It evaluates how good it is to be in
a particular state and take a specific action.

30

Basic Components

Actor-Critic methods address the limitations of
Policy Gradient (lack of foresight) and Q-learning
(inability to scale to continuous action spaces) by
combining both ideas into one uniform framework.

31

Key Mechanisms

● One of the distinctive features of SAC is its use of entropy
regularization.

● Entropy encourages the policy to explore more by adding
uncertainty to the action distribution. This prevents the agent
from becoming overly deterministic, allowing for more robust
learning.

● In entropy-regularized reinforcement learning, the agent gets
a bonus reward at each time step proportional to the entropy of
the policy at that time step.

1. Entropy Regularization

32

Key Mechanisms

1. Entropy Regularization

33

Key Mechanisms

● To stabilize learning, SAC uses a modification of the Q-network known as the
"soft Q-network." The soft Q-network penalizes overestimation errors and
promotes more accurate value function estimation.

2. Soft Q-Network

3. Clipped Double-Q Learning
● Like the TD3 algorithm, SAC learns two Q-functions instead of one, and

uses the smaller of the two Q-values to form the targets in the Bellman
error loss functions.

34

Key Mechanisms

4. Exploration vs Exploitation

● SAC trains a stochastic policy with entropy regularization, and explores in an
on-policy way.

● The entropy regularization coefficient 𝛼 explicitly controls the explore-exploit
tradeoff, with higher 𝛼 corresponding to more exploration, and lower 𝛼
corresponding to more exploitation.

● At test time, to see how well the policy exploits what it has learned, we remove
stochasticity and use the mean action instead of a sample from the distribution.

35

Algorithm Workflow

1. Learning Q

● SAC concurrently learns a policy πθ and two Q-functions Qɸ1, Qɸ2 .

● Both Q-functions are learned with MSBE minimization, by regressing to a
single shared target.

● There is no explicit target policy smoothing. SAC trains a stochastic policy,
and so the noise from that stochasticity is sufficient to get a similar effect.

36

Algorithm Workflow

1. Learning Q

● Before we go to the final form of Q-loss, let’s take a moment to discuss how
the contribution from entropy regularization comes in. Here is the recursive
Bellman equation for the entropy-regularized Qπ -

37

● Approximating the above equation with samples (since it’s an expectation) :

Algorithm Workflow

1. Learning Q

● Putting it all together, the loss functions for the Q-networks in SAC are :

 where the target is given by,

38

Algorithm Workflow

 2. Learning the Policy

● The policy should, in each state, act to maximize the expected future return
plus expected future entropy.

● The policy makes use of the reparameterization trick, in which a sample from
πθ (.|s) is drawn by computing a deterministic function of state, policy
parameters, and independent noise.

● The reparameterization trick allows us to rewrite the expectation over actions
into an expectation over noise.

39

Algorithm Workflow

 2. Learning the Policy

● The policy is optimized according to :

● Here, squashed Gaussian distribution is used :

 The tanh in the SAC policy ensures that actions are bounded to a finite range.
40

Pseudocode

41

Pros and Cons

Pros:

● Stability : By using a soft value function and a stochastic policy, which helps reduce variance in the updates and stabilize the
learning process.

● Continuous Action Spaces : can handle both deterministic and stochastic policies in such settings.
● Exploration : incorporates an entropy term in the objective function, which encourages exploration.
● Off-policy learning : It can make efficient use of previously collected experience replay data, improving sample efficiency.

Cons:

● Computationally Intensive : Especially when using large neural networks or dealing with high-dimensional observations.
● Lack of Determinism: SAC policy is stochastic, which may not be suitable for tasks where deterministic behavior is required.

42

Comparison

43

Applications

Robotics, Autonomous Systems, Industrial
Automation.

1. Manipulation with Robotic Arms/Hands:
a. Tasks: grasping, stacking, inserting objects.
b. Resilience: external perturbations and partial observations.

2. Locomotion with Robots:
a. Types: bipedal (walking, running, jumping) and quadrupedal

(terrain adaptability).
3. Navigation using Vehicles:

a. Environments: complex terrains for aerial and ground vehicles.
4. Gaming Applications:

a. SAC applied to various game scenarios and mechanics.

44

References

● Haarnoja, T., Zhou, A., Abbeel, P. and Levine, S., 2018, July. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning (pp. 1861-1870). PMLR.

● Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A.,
Abbeel, P. and Levine, S., 2018. Soft actor-critic algorithms and applications. arXiv preprint
arXiv:1812.05905.

● https://bair.berkeley.edu/blog/2018/12/14/sac/

● https://sites.google.com/view/sac-and-applications

45

https://bair.berkeley.edu/blog/2018/12/14/sac/
https://sites.google.com/view/sac-and-applications

Deep Deterministic Policy
Gradient
Group 4:

DDPG: Summary and Key features

DDPG, which stands for Deep Deterministic Policy Gradient, is a model-free, off-policy actor-critic algorithm used
for reinforcement learning, particularly in continuous action spaces. It is used for applications like gaming,
autonomous vehicle and robotics.

Actor-Critic Architecture: DDPG uses an actor-critic architecture, where the actor is used to approximate the
optimal policy directly and the critic is used to approximate the value function. The critic's value estimate is used to
guide the policy update.

Deterministic Policy Gradient: Unlike other algorithms that output a probability distribution over actions, DDPG is
designed for situations where the action space is continuous. It uses a deterministic policy gradient to improve the
policy. The gradient of the expected return with respect to the policy parameters is computed, which guides the
updates.

Experience Replay: Like Q-learning-based methods such as DQN, DDPG also utilizes an experience replay buffer.
Past experiences are stored in this buffer and random mini-batches from this buffer are used to train the networks.
This breaks the correlation between consecutive samples and stabilizes training.

DDPG, which stands for Deep Deterministic Policy Gradient, is a model-free, off-policy actor-critic algorithm used
for reinforcement learning, particularly in continuous action spaces. It is used for applications like gaming,
autonomous vehicle and robotics.

Actor-Critic Architecture: DDPG uses an actor-critic architecture, where the actor is used to approximate the
optimal policy directly and the critic is used to approximate the value function. The critic's value estimate is used to
guide the policy update.

Deterministic Policy Gradient: Unlike other algorithms that output a probability distribution over actions, DDPG is
designed for situations where the action space is continuous. It uses a deterministic policy gradient to improve the
policy. The gradient of the expected return with respect to the policy parameters is computed, which guides the
updates.

Experience Replay: Like Q-learning-based methods such as DQN, DDPG also utilizes an experience replay buffer.
Past experiences are stored in this buffer and random mini-batches from this buffer are used to train the networks.
This breaks the correlation between consecutive samples and stabilizes training.

DDPG: Summary and Key features

Target Networks: DDPG employs target networks, both for the actor and the critic, to further stabilize training. This

idea was borrowed from DQN. Target networks are essentially copies of the actor and critic networks but with their

weights frozen. Periodically, these weights are softly updated to the main actor and critic networks' weights.

Exploration: Exploration in DDPG is tackled by adding noise to the action output. The most common noise added is

Ornstein-Uhlenbeck noise, which introduces temporal correlation, making it suited for problems in continuous

action spaces.

Batch Normalization: In some implementations of DDPG, batch normalization is applied to different layers of the

neural networks to ensure that the various inputs are in a consistent range and have zero mean and unit variance.

This can help in accelerating learning.

Pros

● can handle continuous action spaces.

● actor critic architecture stabilizes training.

● off policy training helps stabilize and increase sample efficiency.

Cons
● ddpg is sample inefficient compared to model based.

● it is highly sensitive to hyperparamter.

● It is not good at exploration.

DDPG Algorithm Initialisation

We need to perform the following steps to initialise DDPG:

1. Initialize the actor network and critic network with random weights.

2. Initialize the target networks with the same weights as the main networks.

3. Initialize experience replay buffer.

For each time step:

a. Select an action using the current policy (actor network) and add noise for exploration.

b. Execute the chosen action in the environment and observe the reward and next state.

c. Store the transition in the experience replay buffer.

d. Sample a random mini-batch of transitions from the replay buffer.

e. Compute the target Q-value using the critic's target network and the
reward from the transition.

f. Update the critic by minimizing the Mean Squared Error between the
target Q-value and the predicted Q-value.

g. Update the actor using the sampled policy gradient.

h. Softly update the target networks.

Repeat until convergence or a stopping criterion is met.

DDPG has shown great performance in a variety of tasks, especially those
with continuous action spaces like robotic control tasks. It combines ideas
from DQN and policy gradient methods, allowing for effective learning in
such environments.

DDPG Algorithm Termination and Conclusion

Q/A Session

SARSA Reinforcement
Learning Algorithm
Group 5

● Q-Function (Action-Value Function): The Q-value of a state-action pair represents the
expected cumulative reward an agent can achieve.

● Q-Learning follows an off-policy approach, updating Q-values at the current time step
using the maximum estimated Q-value at the next, regardless of the current policy.

● Update based on temporal difference:

● Backpropagation for function approximation using NNs:

Q Learning

Temporal Difference Learning

Supervised learning:

Where w is a vector of the parameters of our prediction function at time step t, α is a learning rate

constant, z is our target value, V (s) is our prediction for input state s

Q-learning update

Each temporal difference will affect all previous predictions -> How do
we use this for faster convergence?

SARSA

Q-learning with TD

Is maximum of the Q
function the best
representation of the next
state?

No- incorrect initially,
overestimates later

SARSA

On policy
algorithm

The SARSA Algorithm

1. Initialize the start state S
2. Choose an Action A by using some policy (ex.

greedy)
3. Apply Action A and observe the next State S’

and the reward R obtained by reaching that
state

4. Choose Action A’ based on S’ by using the policy
on current value of Q(S’, A’)

5. Repeat Steps 2-4 until Terminal State is
Reached

SARSA vs Q-Learning

SARSA

On Policy: Updates Q-Function Values based on

the current policy

Q-Learning

Off Policy: Updates Q-Function Values based on

the maximum expected Q-Value Regardless of the

current policy

References

● https://web.stanford.edu/group/pdplab/pdphandbook/handbookch10.html

● https://aleksandarhaber.com/explanation-and-python-implementation-of-on-policy-sarsa-tempor

al-difference-learning-reinforcement-learning-tutorial/

● http://mi.eng.cam.ac.uk/reports/svr-ftp/auto-pdf/rummery_tr166.pdf

https://web.stanford.edu/group/pdplab/pdphandbook/handbookch10.html
https://aleksandarhaber.com/explanation-and-python-implementation-of-on-policy-sarsa-temporal-difference-learning-reinforcement-learning-tutorial/
https://aleksandarhaber.com/explanation-and-python-implementation-of-on-policy-sarsa-temporal-difference-learning-reinforcement-learning-tutorial/
http://mi.eng.cam.ac.uk/reports/svr-ftp/auto-pdf/rummery_tr166.pdf

Hindsight
Experience Replay

Group 6

Hindsight is 20/20

What is Hindsight Experience Replay?

Imagine you’re playing cornhole where the goal is to get
your bags on to the board or into the hole (for maximum
points).

You’re practicing getting the bags in the hole on every shot.
Your bags keep landing a little to the right of the hole, so
you adjust your stance, aim, and/or velocity after each
turn. You eventually make it in the hole, and you try to
replicate those stance/aim/velocity choices each time so
you consistently make the hole without error.

This is an example of the human ability to learn from
mistakes.

What is Hindsight Experience Replay?

Using a standard RL algorithm, there would be no

reward for throws that do not result in bags that

land outside of the hole.

How can we learn from failure? Move the goal post!

Hindsight Experience Replay (HER) is a replay

technique that considers failed attempts to be

successful subgoals. The neural network is trained

based on completion of these subgoals for broader

training and progress towards the primary goal.

Experience Replay*

During training, an agent stores transition tuples (s
t
, a

t
, r

t
,

s
t
+1) in a replay buffer.

s
t
 = state

a
t
 = action

r
t
 = reward

S
t
+1 = next state

Batches of experiences are selected from the replay buffer

at random to train the neural network.
*As seen in Deep Q-Networks (DQN)

Hindsight Experience Replay

In HER, Universal Value Function Approximators (UVFA) is
applied so states and goals are taken into consideration,
training an agent to perform multiple tasks instead of just
one.

When the agent fails at the primary goal, it considers that
experience to be a successful attempt at a subgoal.

During the experience replay, the original goal is replaced
by successful subgoals, which are used to train the neural
network.

This leads to faster learning based on the “failed”
experiences.

Pros & Cons of HER

Pros

● Allows for learning when rewards are sparse & binary.
● Avoids the need for complicated reward engineering & domain knowledge.
● Can be combined with any off-policy RL algorithm such as DQN, DDPG, SSC etc.
● Doesn’t require control over distribution of initial environmental states, as with explicit

curriculum.

Cons

● Limited to goal-oriented tasks.
● Misleading samples can introduce bias to the learning process (i.e., inaction could be considered

success).
● Can focus on failed trajectories instead of the goal in some cases.
● Increased computational complexity.

Deep Q-Networks (DQN) with and without HER

RL algorithms are significantly limited with

sparse/binary rewards.

In a bit flipping environment:

● DQN alone can only solve n < 13

● DQN with HER solves up to n = 50

Deep Deterministic Policy Gradients (DDPG*)
with and without HER

Given pushing, sliding, and pick-and-place tasks:

● DDPG alone can’t complete the tasks.

● DDPG with count-based exploration makes some progress on the sliding task.

● DDPG with HER completes all tasks.
*DDPG covered by Group 4

Applications of HER

● Primary application is scenarios with sparse or binary rewards.

● Used with model-free, off-policy algorithms since they are typically used

to handle environments with sparse or binary rewards and often use

general experience replay.

● Can be used in both discrete & continuous action spaces.

References

● Hindsight Experience Replay: https://arxiv.org/pdf/1707.01495.pdf

● Bias-Reduced Hindsight Experience Replay with Virtual Goal

Prioritization: https://arxiv.org/pdf/1905.05498.pdf

https://arxiv.org/pdf/1707.01495.pdf
https://arxiv.org/pdf/1905.05498.pdf

Understanding the
REINFORCE Algorithm
A Deep Dive into Policy Gradient Methods

(Group 7)

What is REINFORCE and how does it work?
● REINFORCE stands for "REward Increment = Nonnegative Factor * Offset

Reinforcement * Characteristic Eligibility," and it was introduced by Ronald
J. Williams in 1992.

● A machine learning technique that focuses on training a policy in order to
maximize the expected cumulative reward in an environment.

○ It uses a parametric policy (typically a neural network).

○ Generates a trajectory of states, actions, and rewards.

○ Updates the policy parameters based on the expected return.

● To put it concisely, this is a type of machine learning where an agent
interacts with an environment and learns to make a sequence of decisions
(actions) to maximize a cumulative reward. The agent explores different
actions and learns from the consequences of its actions.

Training Process

● Collect trajectories by interacting with
the environment.

● Compute returns and rewards.

● Update the policy parameters to
increase the probability of actions that
lead to higher rewards.

REINFORCE Pseudocode

● Key Points:
○ Policy gradient method used in

reinforcement learning.
○ Focuses on optimizing the policy directly.

● The agent collects samples of an
episode using its current policy, and
uses it to update the policy
parameter θ .

Pros and Cons of REINFORCE

● Advantages:
○ Suitable for high-dimensional

action spaces.
○ Handles stochastic policies.
○ Converges to a local optimum.

● Disadvantages:
○ High variance in training.
○ Inefficient for long trajectories.
○ Struggles with sparse rewards.

● Comparison to Other RL Algorithms: REINFORCE stands out as a policy
gradient method, emphasizing direct policy optimization. It is versatile and
can work in various environments unlike other algorithms.

○ Q-learning: better suited for discrete action spaces

○ DDPG (Deep Deterministic Policy Gradient): better suited for precise control in continuous
action spaces

Applications of REINFORCE

● Model-free.

● Suitable for discrete and continuous state/action spaces.

● Used in on-policy setting

● Real World Examples:

○ Training agents for playing games.

○ Robot control.

○ Natural language processing tasks.

References

● Guest_Blog. (2020). REINFORCE Algorithm: Taking baby steps in reinforcement
learning. Analytics Vidhya.
https://www.analyticsvidhya.com/blog/2020/11/reinforce-algorithm-taking-baby-steps
-in-reinforcement-learning/

● Papers with Code - REINFORCE Explained. (n.d.).
https://paperswithcode.com/method/reinforce

● Reinforcement Learning Agents - MATLAB & Simulink. (n.d.).
https://www.mathworks.com/help/reinforcement-learning/ug/create-agents-for-reinfo
rcement-learning.html

● Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
press.

Thank You!
Any Questions?

QR-DQN Learning
Group 8

Deep Q-Network

Immediate Reward

(Sₜ, Aₜ) → Env → Rₜ₊₁, Sₜ₊₁

Total Future Reward

Qₜ = Rₜ₊₁ + Rₜ₊₂ + ….. + Rₜ₊ₜ

Discounted Future Reward

Qₜ = Rₜ₊₁ + ℽQₜ₊₁

● Traditional Deep Q-Networks (DQNs) learn to estimate the expected value of taking a given action in a given state.
This expected value is often referred to as the Q-value.

● Quantile Regression DQN (QR-DQN) is a variant of DQN that learns to estimate the quantiles of the Q-value
distribution.

● This means that QR-DQN learns to estimate the probability that the Q-value will be greater than a certain threshold.

Why Perform Quantile Regression?

QR-DQN Working

● QR-DQN uses the same architecture as traditional DQN,
but with a few modifications.

● Output layer of the QR-DQN is a quantile regression
network. This network learns to estimate the quantiles of
the Q-value distribution.

● QR-DQN is trained using the same experience replay
procedure as traditional DQN. However, the loss function
used to train the QR-DQN network is different.

● The QR-DQN loss function is designed to minimize the
difference between the predicted quantiles and the actual
quantiles of the Q-value distribution.

QR-DQN Flow

Step 1: Agent interacts with the environment and takes an action

Step 2: Agent observes the new state and reward

Step 3: Agent stores its experience in a memory buffer

Step 4: Agent samples from the memory buffer and trains the QR-DQN network

Step 5: QR-DQN network learns to estimate the quantiles of the Q-value distribution

Step 6: Agent uses the QR-DQN network to select actions in the environment

Advantages and disadvantages

● QR-DQN addresses the uncertainty in Q value
estimates - even in uncertain environments this
can result in strong or certain model.

● With help of different quantiles in the distribution,
exploration can also be better included even in
less rewarding regions.

● Due to which even if outliers occur our model
become less sensitive to it - more robust.

● It is more adaptable because quantile values are
learnt from the data not pre fixed

● As the data is updated, it also updates the
distributions and fine tunes them, which makes it
more adaptable.

● It needs more computational power as it is
dynamically updating the quantile number and
values

● The higher the quantiles - the more accurate the
picture of complex data ; but it also results in the
higher the number of quantiles - higher the
computational power - that gives slower
convergence

● It requires proper and large number if samples to
learn well and perform

● It is very sensitive to number of quantiles and due
to its distribution nature, if quantiles are high - it is
most likely going to overfit

Applications

As we have already learnt any environment with good uncertainty is a good fit for QR-DQN:

● Stock markets and finance trading: Because QR-DQN represents the entire distribution using quantiles, it
captures the environment along with its uncertainties and gives out a state-action pair. Considering the amount of
uncertainty in trading, this fine tunes itself and becomes robust when trained properly.

● Autonomous vehicles: QR-DQN can shine in this region as uncertainty on the roads is definitely certain and we
need the model to be more robust when faced with situations like adverse weather conditions or traffic.

● Datacenter facility Failure: As we know that it adapts it changing environment, if a facility had to break downit
dynamically allots the resources to mitigate the impacts of the failure which results in efficient and risk aware decision
making.

● Price optimization in retail: Given proper historically relevant data, QR-DQN can estimate the distribution function;
through which one can redefine their inventory and also mark down or up the prices looking at the estimated demand
and supply.

The algorithm is hard to set up and needs strong understanding in distributional statistics. QR-DQN can over engineer in
certain environments and using a traditional RL algorithm can do better in such scenarios. It is essential to first evaluate the
need of the algorithm in given task and use.

Copyright © 2023 Arizona Board of Regents

TRUNCATED QUANTILE CRITICS (TQC)

CSE 574 Planning and Learning in AI

GROUP 9:

Copyright © 2023 Arizona Board of Regents

TQC AND ITS
WORKING

Copyright © 2023 Arizona Board of Regents

WHAT IS TQC?
● The overestimation control is coarse – impossible to take the minimum over a

fractional number of approximators

● Aggregation with min ignores all other estimates except for the minimal one,
diminishing the power of the approximator.

● Builds on SAC, TD3 and QR-DQN.

● Quantile regression to predict a distribution for the value function.

● Truncates the quantiles predicted by different networks.

Copyright © 2023 Arizona Board of Regents

IDEALOGY
● TQC blends 3 ideas:

○ Distributional representations of the critic

○ Truncation of overestimation of critics

○ Ensembling of multiple critics without wastage

Copyright © 2023 Arizona Board of Regents

WORKING
● “Decompose” the expected return into atoms of distributional return.
● Truncate the approximation of the return distribution to control

overestimation.
● Ensemble multiple distributional approximators to improve Q-value

estimation.
● Non-truncated critics’ approximations for policy optimization and

truncate target return distribution at value learning stage – prevents
errors from propagating to other states and eases policy optimization.

Copyright © 2023 Arizona Board of Regents

WORKING (contd.)

Copyright © 2023 Arizona Board of Regents

COMPARISION WITH
OTHER
ALGORITHMS

Copyright © 2023 Arizona Board of Regents

SINGLE STATE MDP
● Evaluate bias correction techniques in a single state continuous action infinite

horizon MDP.

● TQC can achieve the lowest variance and the smallest bias of Q-function
approximation among all the competitors.

Copyright © 2023 Arizona Board of Regents

COMPARATIVE EVALUATION
● Comparing with original implementations of SAC, TrulyPPO and TD3.

● Evaluate the performance every 1000 frames as an average of 10
deterministic rollouts.

● TQC performs consistently better than any of the competitors.
● Also improves upon the maximal published score on four out of five

environments

Copyright © 2023 Arizona Board of Regents

TQC – Pros and Cons
● Improvement over existing off policy algorithms like DQN, SAC, QRDQN and

TD3.
● Existing work only focused on Discrete action space; Recent work focus on

distributional networks like QRDQN, Implicit Quantile Network and Fully
Quantile Network but they focused on their architecture alone and couldn’t be
used in tandem or as a direct improvement on existing off policy algorithms by
improving their Q functions.

● The biggest advantage of TQC is its modularity which allows it to work with
algorithms which work on both discrete and continuous action spaces.

● The most prominent disadvantage is it adds to the computational complexity
of already complex algorithms.

Copyright © 2023 Arizona Board of Regents

Copyright © 2023 Arizona Board of Regents

Applications

Copyright © 2023 Arizona Board of Regents

Applications of TQC
● Applied in both model-free settings where the agent learns directly from

interactions with the environment.
● Can handle both continuous and discrete state and action spaces.
● Used in off-policy settings, allowing it to leverage past experiences efficiently

for learning.
● Used in effectively handling stochastic environments by modeling conditional

quantiles.
● Balances exploration and exploitation effectively, adapting to uncertainty

levels.
● Applied in robotics for control tasks, where continuous action spaces and

real-world uncertainties are common.

Copyright © 2023 Arizona Board of Regents

Applications of TQC
● Enhancement of performance of agents in games, especially in complex and

strategic game environments.
● Used in finance for risk assessment, portfolio management, and derivative

pricing due to its ability to model non-Gaussian returns.
● Improvement of performance of chatbots and dialogue systems in natural

language processing tasks.
● Employed in anomaly detection for identifying unusual patterns and events in

various domains like network security and fraud detection.
● Helping optimize resource allocation, sensor placement, and decision-making

in environmental monitoring and climate modeling by managing uncertainties.

Copyright © 2023 Arizona Board of Regents

References

Copyright © 2023 Arizona Board of Regents

References
● https://sb3-contrib.readthedocs.io/en/master/modules/tqc.html
● https://arxiv.org/abs/2005.04269
● https://openreview.net/forum? id=Bkg0u3Etwr.
● https://proceedings.mlr.press/v119/kuznetsov20a.html
● Bunea, Cornel, Theodore Charitos, Roger M. Cooke, and Günter Becker.

"Two-stage Bayesian models—application to ZEDB project." Reliability
Engineering & System Safety 90, no. 2-3 (2005): 123-130.

● Kuznetsov, Arsenii, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov.
"Controlling overestimation bias with truncated mixture of continuous
distributional quantile critics." In International Conference on Machine
Learning, pp. 5556-5566. PMLR, 2020.

https://sb3-contrib.readthedocs.io/en/master/modules/tqc.html
https://arxiv.org/abs/2005.04269
https://openreview.net/forum?
https://proceedings.mlr.press/v119/kuznetsov20a.html

Copyright © 2023 Arizona Board of Regents

AUGMENTED RANDOM SEARCH
ARS

By Group 10

Copyright © 2023 Arizona Board of Regents

What is ARS?
• Augmented Random Search (ARS) is a reinforcement

learning algorithm used for solving continuous control tasks.

• It is a model-free, black-box optimization technique that does

not require access to the gradient of the objective function,

making it suitable for problems with non-differentiable or

unknown dynamics.

Copyright © 2023 Arizona Board of Regents

• Random Search is one of the simplest and oldest optimization

methods for derivative-free optimization

• Random search chooses a direction uniformly at random on the

sphere in parameter space, and then optimizes the function along

that direction

• Basic random search simply computes a finite difference

approximation along the random direction and then takes a step

along this direction without using a line search

Basic Random Search

Copyright © 2023 Arizona Board of Regents

Copyright © 2023 Arizona Board of Regents

How does ARS work?
• Start with a Random Policy: Begin with a random way of doing tasks.

• Experiment with Actions: Try out various random actions (like movements of

a robot's limbs).

• Measure Performance: See how well each action performs the task (like

measuring how far the robot moves).

• Make Small Changes: Adjust the random actions slightly (perturbations).

• Repeat Exploration: Try the task again with these slightly changed actions.

• Learn from Results: Figure out which changes led to better performance.

• Update Actions: Modify future actions based on what worked well.

• Repeat and Refine: Keep repeating these steps, gradually improving the task

performance through trial and error.

Copyright © 2023 Arizona Board of Regents

Pros of ARS (Augmented Random Search)

• Efficient Exploration of Policy Space: ARS utilizes a random search strategy to efficiently explore the
policy space, allowing it to quickly sample a diverse set of policies.

• Low Data Requirements: ARS often requires fewer samples or interactions with the environment
compared to gradient-based algorithms, making it more sample-efficient. This can be crucial in
domains where collecting data is expensive or time-consuming.

• No Gradient Calculations: Unlike gradient-based methods, ARS does not require gradient
calculations. This can be advantageous in scenarios where gradients are hard to compute or are
noisy, making it a suitable choice for non-differentiable or discontinuous optimization problems.

• Potential for Discovering Novel Solutions: The random search strategy employed by ARS may lead to
the discovery of unconventional or innovative policies that might not be apparent through more
traditional optimization approaches

Copyright © 2023 Arizona Board of Regents

Cons of ARS (Augmented Random Search)

• Sensitivity to Hyperparameters - ARS agent to navigate a maze -> learning rate too high or too low
will fail to provide results

• Limited to Policy Optimization - ARS might struggle to find a good strategy in chess whereas
value-based methods like Q-learning or AlphaZero excel

• Lack of Theoretical Guarantees - In robotics, where precise control is essential, the lack of theoretical
guarantees can be a drawback

• Limited Memory for Exploration - Consider an agent learning to play a complex video game where
information from several time steps is essential. ARS's limited memory could hinder its ability

• Not Suitable for All Environments - In a robotics task involving stacking objects in a specific order,
ARS might struggle because it lacks the capacity for learning hierarchical representations, which is
better suited to hierarchical reinforcement learning methods.

Copyright © 2023 Arizona Board of Regents

Applications
• Environment monitoring in drones.

• Decision-making in autonomous vehicles in dynamic and complex

environments.

• Recommendation systems to generate personalised

recommendations.

• Training agents in video games.

• Optimizing the control of manufacturing and other automation

processes in the industries.

Copyright © 2023 Arizona Board of Regents

Copyright © 2023 Arizona Board of Regents

References

• Simple random search provides a competitive approach to reinforcement learning

• https://github.com/AnshumaanDash/Augmented-Random-Search

• https://towardsdatascience.com/introduction-to-augmented-random-search-d8d7b55309b

d

• https://www.sciencedirect.com/science/article/abs/pii/S0959652622042482

• https://iq.opengenus.org/augmented-random-search/

https://arxiv.org/pdf/1803.07055.pdf
https://arxiv.org/pdf/1803.07055.pdf
https://arxiv.org/pdf/1803.07055.pdf
https://arxiv.org/pdf/1803.07055.pdf
https://arxiv.org/pdf/1803.07055.pdf

Copyright © 2023 Arizona Board of Regents

THANK YOU

Recurrent PPO
Team - 11

Recurrent PPO: LSTM

● Agent model now has LSTM module that feeds its hidden state to the (actor/critic) modules
● Meant to incorporate memory of state information

Recurrent PPO: Training Modifications

● Careful calculation of advantage estimator
● We can only use policy gradient were samples are sequentially sampled Not random

Advantage Estimate for
Recurrent Networks

Key Advantages of Recurrent PPO
Sample Efficiency:

1. While on-policy methods may require more samples, in robotics, ensuring safety and
effectiveness outweighs sample efficiency concerns.

Overcoming Model Mismatch:

1. Real-world environments often deviate from simulations. Recurrent PPO excels in handling
these discrepancies, learning directly from real-world experiences.

Considerations:

1. Continuous State/Action Spaces: Well-suited for tasks with continuous state and action
spaces.

2. Safety-Focused Environments: Ideal for environments where safety and stability are
paramount.

Recurrent PPO: Pros
● The agent may maintain and update an internal memory or context of previous.
● Enhances learning in scenarios where states are only partially observable or rewards are

delayed.
● Recurrent PPO is well-suited for large-scale training because, when implemented effectively,

it can be parallelized and deployed across multiple processors or distributed computing
systems to take advantage of their combined processing power.

Recurrent PPO: Cons
● It can take a lot of time and computing power to train PPO agents for difficult tasks or in

high-dimensional state spaces.
● Sensitive to the selection of hyperparameters.
● The use of LSTM in the baseline is notably unstable.

Applications

● Extension of PPO for tasks with sequential or time-dependent data.
● Ideal for scenarios where current actions effectiveness is influenced by past actions and

observations.

Few Applications :
● Robotics control tasks involving sequences (e.g., robotic hand handling items)
● Games demanding memory from past actions (e.g., card games, DOTA 2)

Why Recurrent PPO in Robotics?
● Safety and Stability: Reduces the risk of dangerous or costly mistakes, crucial in

safety-critical applications.
● Adaptability to Dynamics: Well-suited for complex and unpredictable physical environments,

eliminating the need for precise modeling.
● Continuous Learning: Allows for seamless adaptation to varying task requirements.

References

1. Huang, et al., "The 37 Implementation Details of Proximal Policy Optimization", ICLR Blog
Track, 2022.

2. Cobbe, Karl, et al. "Leveraging Procedural Generation to Benchmark Reinforcement
Learning." ArXiv, 2019, /abs/1912.01588. Accessed 13 Oct. 2023.

Q & A

Dueling Deep Q
Network
Algorithm

Group 12

● Dueling DQN (Deep Q-Network) is an advanced variant of the traditional DQN in Reinforcement
Learning (RL).

● Key Components
Dueling DQN introduces a novel architecture, splitting the Q-value into two components:

●
○ Value Function (V(s)): Represents the expected cumulative future rewards from a given state,

irrespective of the chosen action.

○ Advantage Function (A(s,a)): Captures the advantage of taking a specific action in a given state
compared to the average action in that state.

● Key Innovation
○ Dueling DQN decouples value and advantage functions, enabling more efficient action-value

estimation in RL.

Introduction:
Dueling DQN

Dueling DQN Architecture:
Motivation

● Motivation
○ For many states, estimation of state value is more important, comparing with

state-action value.
○ Better approximate state value, and leverage power of advantage function

Working of Dueling DQN
● Dueling DQN works by decomposing the Q-function into two separate functions: the state-value function V(s)

and the action-advantage function A(s,a).
● The state-value function estimates the expected reward for being in a given state, regardless of the action taken.
● The action-advantage function estimates how much better it is to take a given action over the average action.
● The following mathematical equation describes the working of Dueling DQN:

Q(s,a) = V(s) + A(s,a)

where,
○ Q(s,a): Q-value for state s and action a
○ V(s): state-value function for state s
○ A(s,a): action-advantage function

● The V(s) is estimated using CNN with single
output, whereas the A(s,a) is estimated using
CNN with multiple outputs, one for each action.

Working of Dueling DQN
● Value Aggregation

○ The state-value V(s) is not directly used to make action decisions; Instead it is aggregated to help compute
the Q-values. Typically, the average of advantage values for all actions is added to V(s). Hence,

Q(s,a) = V(s) + A(a,s) - Avg[A(a’,s)]
● Decision-Making

○ To make decisions, the agent selects actions based on the computed Q-values. The action with the highest
Q-value in a given state is chosen as the optimal action.

● Training
○ Dueling DQN uses Experience Replay and Target Network to train the neural network efficiently.
○ Loss function: The mean squared error between the predicted Q-values and the target Q-values.

Loss = E[(Q(s, a) - (r + γ * max(Q(s', a'))))^2]
where,

r = reward received for taking action a
γ = discount factor
Q’(s’, a’) = Predicted Q-value for the next state s’ and action a’

Dueling DQN Algorithm
1. Initialize two neural networks, one for the state-value

function and one for the action-advantage function.
2. Initialize a replay memory.
3. At each time step:

● Take an action a in the current state s.
● Observe the next state s' and the reward r.
● Store the transition (s, a, r, s') in the replay

memory.
● Sample a batch of transitions from the replay

memory.
● Calculate the target Q-values for the sampled

transitions using the Bellman equation.
● Update the state-value network and the

action-advantage network using the loss function.
4. Repeat step 3 until the agent reaches convergence.

Pros & Cons

Pros Cons

- Improved performance - Computationally intensive

- Efficient value estimation (prevents
overestimation) - Hyperparameter tuning

- Better handling of large action
spaces

- Not as well suited for continuous action
spaces

- Improved learning stability - Data efficiency

- More robust in complex
environments - Risk of overfitting

#

Properties & Requirements
of Dueling DQN

● Properties
○ Model-free learning
○ Off-policy learning
○ Discrete state/action spaces

● Requirements
○ Deep neural network
○ Experience replay
○ Target network

Applications of Dueling DQN

● Training robots to navigate in complex environments

● Controlling robotic arms or grippers to manipulate objects with precision

● Managing Investment portfolios by selecting best actions (buy, sell, hold)

● Personalized treatment planning for patients by optimizing drug dosages or
therapy schedules

● Optimizing ad placement for maximum user engagement

● Atari games & board games such as chess, go, or other strategic games
where the algorithm can learn optimal strategies

References
● Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., & de Freitas, N. (2015). Dueling network

architectures for deep reinforcement learning.

● Van Hasselt, H., Guez, A., & Silver, D. (2015). Deep reinforcement learning with double Q-learning.

● Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Graves, A., Riedmiller, M., Heess, N.,
Ostrovski, G., Dahl, G. E., & others (2015). Human-level control through deep reinforcement learning.

Thank You!

CSE 574 : Planning & Learning Methods in AI

(Fall 2023)

Group13

Supervisor : Dr. Ransalu Senanayake

Advantage Actor Critic (A2C)

Introduction

● Advantage Actor Critic (A2C) is a policy gradient RL algorithm which uses the
combination of policy-based and value-based methods to help agent to learn an
optimal policy based on the environment.

● It comprises of three key components:

○ Actor - Controls the behaviour of the agent i.e. helps agent in deciding next
action based on current state.

○ Critic - Judges the actor’s decisions and identifies how good the action taken
by actor is.

○ Advantage - Helps in quantifying the correctness of the decision taken by
actor based on critic’s prediction.

How it works ?

A2C Architecture

Advantage A (st, at)

Advantage Function

● This function helps in quantifying how much better or worse the action (at) is
when compared to critic’s estimate for a given state (st).

Actor and Critic Network

Actor Network:

● It is a policy network which helps
agent decide next action based on
current state.

at = πΘ (st)

● The actor network is updated using
the policy gradient method.
∇ΘJ(Θ) = E[∇Θ[log πΘ (at|st) A(st, at)]]

● To favor exploration, A2C also uses
entropy term to the gradient
calculation.

∇ΘJ(Θ) = E[∇Θ[log πΘ (at|st) A(st, at) - βH(πΘ
(st))]]

Critic Network:

● It is a value network which helps in
judging the correctness of the
action taken by the actor network
based on current state.

Expected return = Q (st, at)

● The critic network is updated using
critic loss to improve the expected
return for the given state.

Δω = α∇ω(rt+1 + γV (st+1) - V (st))

Pros and Cons

Pros: Cons:

● Only need to estimate V function, don’t
need to estimate Q function.

● The parameters of actor 𝛑(s) and critic
V𝛑(s) can be shared.

● A2C might require a large number of samples to
learn effectively. This makes it slow to converge
and sensitive to exploration strategies.

● A2C is based on gradient descent. The direction
of the steepest improvement is prone to rapid and
unpredictable changes depending on the actor,
the critic, and the environment which can lead to
oscillations, divergence, or poor performance.

● A2C can struggle to generalize and transfer its
knowledge to new situations.

● A2C is a black-box algorithm meaning it does not
provide any explicit or intuitive rationale for its
actions or values.

● A2C is a goal-oriented algorithm, which means it
tries to maximize its reward, regardless of the
potential side effects or trade-offs. This can raise
ethical and social concerns.

Properties and Use Cases

Properties:

● It uses stochastic policies and can't
use recurrent policies.

● It can work with both discrete and
continuous action spaces.

● It uses multiple workers to avoid the
use of replay buffer.

● It is designed to work primarily on
CPU.

● It is a on-policy, model-free RL
algorithm.

● It uses N-step update.

Use Cases:

● Robotics : Used to train Robots to
perform complex tasks, such as
grasping and manipulation.

● NLP : Used to train chatbots to
interact with humans in a more
natural and intuitive way.

● Gaming: Used to train game agents
(eg: chess, go).

● Finance: Used to develop trading
algos that can learn from market
data and adjust their strategies
based on changing market
conditions.

References

References

1. Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning."
International conference on machine learning. PMLR, 2016.

2. Haarnoja, Tuomas, et al. "Soft actor-critic algorithms and applications." arXiv preprint
arXiv:1812.05905 (2018).

Any Questions?

Copyright © 2023 Arizona Board of Regents

Asynchronous Advantage
Actor Critic(A3C)

Group 14

Copyright © 2023 Arizona Board of Regents

Background
Reinforcement Learning Methods

Value Based methods: map each state-action pair to a value, which represents the expected cumulative reward the agent
can obtain by following a specific action-selection strategy.

Policy Based methods: directly optimize the policy without a value function. The goal is to maximize the performance of
the parameterized policy using gradient ascent.

A2C (Advantage Actor-Critic)
It a synchronous RL algorithm in which multiple agents run in parallel to collect experiences from the environment.
Drawbacks:

- High variance due to reliance on policy gradients which can lead to slow and unstable learning.
- Sensitivity to hyperparameters.

DQN (Deep Q-Network)
It is a deep reinforcement learning algorithm that focuses on estimating the action-value function (Q-function).
Drawbacks:

- Lack of handling continuous action spaces.
- Sample inefficiency.

Copyright © 2023 Arizona Board of Regents

How does A3C work?

A3C stands for Asynchronous Advantage Actor Critic

Copyright © 2023 Arizona Board of Regents

Actor - Critic

The goal of the Actor is in optimizing the policy (“How to act?”), and the Critic aims at
optimizing the value (“How good action is?”)

● The actor takes as input the state and outputs the best action. It essentially
controls how the agent behaves by learning the optimal policy (policy-based).

● The critic, on the other hand, evaluates the action by computing the value
function (value based).

It stands for two neural networks — Actor and Critic

Copyright © 2023 Arizona Board of Regents

What is Advantage?

Q values can, in fact, be decomposed into two pieces: the state Value function V(s) and

the Advantage value A(s, a):

Q(s,a)=V(s)+A(s,a) => A(s,a)=Q(s,a)−V(s) => A(s,a)=r+γV(s’)−V(s)

Advantage function captures how better an action is compared to the others at a given

state, while as we know the value function captures how good it is to be at this state.

Copyright © 2023 Arizona Board of Regents

“Asynchronous”
In A3C we have a global network with
multiple agents having their own set of
parameters.

It consists of multiple independent
agents(networks) with their own weights,
who interact with a different copy of the
environment in parallel.

It relies on parallel actor-learners and
accumulated updates for improving training
stability.

The key difference from A2C and DQN is the Asynchronous part.

Copyright © 2023 Arizona Board of Regents

Important to note!
The updates are not happening simultaneously and that’s where the
asynchronous part comes from.

The policy and the value function are updated after every tmax actions or when
a terminal state is reached.

After each update, the agents resets their parameters to those of the global
network and continue their independent exploration and training for n steps until
they update themselves again. Therefore, the flow of information exists between
the agents themselves through the global network.

Copyright © 2023 Arizona Board of Regents

Copyright © 2023 Arizona Board of Regents

Properties and Requirements
● Environment: Needs an interactive model.
● Multiple Agents: A3C uses parallel agents in multiple environment instances.
● Policy and Value Function: A3C keeps a policy and value function estimate,

needing function approximators like neural networks.
● Computation Resources: A3C is suitable for parallel computation on

multi-core CPUs and can be GPU-implemented.
● Reward Signal: A3C needs a clear reward signal from the environment for

learning.

Copyright © 2023 Arizona Board of Regents

Pros and Cons of A3C

Copyright © 2023 Arizona Board of Regents

Pros and Cons of A3C
PROS:

● Faster, Simpler and more robust in standard RL tasks as compared to policy gradients

and DQN

● The A3C agent learns the achievement of higher scores, making learning process

better.

● A3C consists of multiple independent agents(networks) with their own weights, who
interact with a different copy of the environment in parallel. Thus, they can explore a
bigger part of the state-action space in much less time than A2C.

CONS:

● The main drawback of asynchrony is that some agents will be playing with an older
version of the parameters.

Copyright © 2023 Arizona Board of Regents

Applications of A3C

Game Playing
Achieved Superhuman

performance

Real world Autonomous Driving,
lane following, decision-making

at intersections

Robotic Controls
Especially in complex and dynamic

environments.

Copyright © 2023 Arizona Board of Regents

Applications of A3C
Being well-suited for environments with a large state or action space, A3C can be used to perform the
following tasks:

- Recommendation systems: Optimize content recommendations to users. It can help personalize
recommendations based on user behavior and preferences.

- Natural language processing: Train NLP models to generate text, translate languages, or perform
dialogue generation tasks.

- Resource Management: Applications involving resource allocation and management, such as data
center optimization, dynamic pricing, or energy management.

- Healthcare: Used for medical image analysis, drug discovery, and optimizing treatment plans. It can
help in making predictions and recommendations in healthcare settings.

Copyright © 2023 Arizona Board of Regents

References
● Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D. and Kavukcuoglu,

K., 2016, June. Asynchronous methods for deep reinforcement learning. In International
conference on machine learning (pp. 1928-1937). PMLR.

● https://theaisummer.com/Actor_critics/
● https://paperswithcode.com/method/a3c
● https://medium.com/sciforce/reinforcement-learning-and-asynchronous-actor-critic-agent-a3c-

algorithm-explained-f0f3146a14ab

https://theaisummer.com/Actor_critics/
https://paperswithcode.com/method/a3c
https://medium.com/sciforce/reinforcement-learning-and-asynchronous-actor-critic-agent-a3c-algorithm-explained-f0f3146a14ab
https://medium.com/sciforce/reinforcement-learning-and-asynchronous-actor-critic-agent-a3c-algorithm-explained-f0f3146a14ab

Copyright © 2023 Arizona Board of Regents

Thank You

GENERATIVE ADVERSARIAL
IMITATION LEARNING

(GAIL)
Presented by Group-15:

Ho, Jonathan, and Stefano Ermon. "Generative adversarial imitation learning." Advances in neural information processing systems 29 (2016)- 2770 citations

Reinforcement Learning

Reinforcement Learning

Reward

RL: Reward Function: A function could provide feedbacks on action taking (resource of improvement)

RL needs Reward functions, hard to get in realistic scenarios

F(s) ⇒ R

RL:

IRL(Inverse):

Reward Function: A function could provide feedbacks on action taking (resource of improvement)

 RL needs Reward functions, hard to get in realistic scenarios

How to overcome the “headache” of not able to explicitly define the reward function ?

⇒ Let’s infer the reward function from expert data, and then based on that reward function, optimize policy

RL:

IRL(Inverse):

Model based/Model free

Value Iteration / Policy Gradient

Let’s infer the reward function from expert data, and then based on that reward function, optimize policy

MaxEnt IRL

Linear IRL

Learning a reward function is already Challenging, then learn RL on it: Expensive

IRL(Inverse):
Let’s infer the reward function from expert data, and then based on that reward function, optimize policy

MaxEnt IRL

Linear IRL

reward function is assumed to be a linear combination of known features

: weight vector to be learned

: feature vector represented from state s

IRL(Inverse):
Let’s infer the reward function from expert data, and then based on that reward function, optimize policy

MaxEnt IRL

Linear IRL

Learning a reward function is already Challenging, then learn RL on it: Expensive

Instead of explicitly recovering the reward function:

A discriminator differentiates between the expert's trajectories and the trajectories produced by the current policy (Generator)

GAIL:

GAIL From Generative Adversarial Network

Real/Fake

Generato
r

Real
data(Image)

Generative Adversarial Networks (GAN):

Discriminato
r

Generated
data(Image)

Z

Latent
Vector

Real/Fake

Generative Adversarial Networks (GAN):

Z

Latent
Vector

GAIL From Generative Adversarial Network

GAIL: Architecture

• GAIL learns a policy by simultaneously training it with a discriminator that aims to
distinguish expert trajectories against trajectories from the learned policy.

Without Reward How does it use TRPO/PPO?

1. It take the Discriminator score as the collected reward
2. Then apply Policy Gradient method to optimize Policy (Generator)

GAIL:

GAIL: Pros and Cons
• Pros:

•Get rid of explicitly designing reward function

•Directly extract a policy from data

•Model-free imitation learning algorithm

•Sample efficient in terms of expert data

• Cons:
•Sample inefficient in terms of environment interaction – on par with TRPO

•Assuming similar problems of GANs:

Mode collapse

Hard to converge

•Require Expert Dataset

GAIL: Requirements
• Requirements:

•Problem Modeling: MDP

•Main requirements being:

Large sample of Expert trajectories/demos (high cost)

Discriminator model

Policy Network (Generator)

GAIL: Examples

Da L, Wei H. CrowdGAIL: A spatiotemporal aware method for agent navigation[J]. Electronic Research Archive, 2022, 31(2).

https://docs.google.com/file/d/1kUtkv7RlGBIMtaJgga2lVh_ES8_YIN_W/preview

QUESTIONS?

Ho, Jonathan, and Stefano Ermon. "Generative adversarial imitation learning." Advances in neural information processing systems 29 (2016)- 2770 citations

