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Introduction
● The Monte Carlo Tree 

Search (MCTS) Algorithm 
is a popular tree-based 
Reinforcement Learning 
Approach [1]

● States are represented as 
nodes and actions are edges

● Consists of four repeated 
steps:

○ Selection
○ Expansion
○ Simulation
○ Backpropagation Image from [3]



Selection
● Start from a given node
● Select child node based on tree node 

policy
● Repeat until leaf node is reached
● Leaf node : Node that hasn’t been 

expanded/explored yet
● Tree Policy : function used to assign 

value for node selection
○ UCB is the most popular

Image from [3]



Expansion
● Expand leaf node by 

randomly applying one of 
the possible actions and 
generating a new node

Image from [3]



Simulation

● Check if generated node is terminal state
● If yes, stop
● If no, repeat by choosing another random 

action and generating another node
● Simulation also called rollout policy
● Rollout policy can be applied multiple 

times to explore more space at the cost of 
processing speed

Image from [3]



Backpropagation
● Reward at terminal state is 

passed up along the same 
path

● Nodes are updated with new 
wi, si, and sp values

● Repeated for given root node 
for a certain number of 
simulations or certain 
amount of time

● Action chosen based on best 
score of child node of given 
root node

Image from [3]



Pros

● Random selection enables quick navigation of large state spaces
● Tree policy supports balanced approach to exploration and exploitation
● Does not require prior knowledge of environment (model free learning)

Cons
● Can require a lot of iterations to converge to a good solution
● Performance strongly dependent on number of simulations/time allotted



Applications

● Works well in board games, most popularly known to be used in AlphaGo
● Works well for path finding and decision making in simple robots
● Has been used to make AI-powered opponents in video games [2]
● Pros mentioned before explain why it is good in these scenarios

Image from [4]



Image from [5]
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Introduction

● Vanilla Policy Gradient (VPG) is a fundamental reinforcement learning algorithm used to train 

agents in a trial-and-error manner.

●  At a high level, VPG focuses on improving an agent's behavior over time to maximize the total 

rewards it can earn in an environment. 

● It achieves this by directly adjusting the agent's policy, which is like its strategy, to increase the 

likelihood of taking actions that lead to higher rewards. 

● VPG is a simple and intuitive approach to reinforcement learning that forms the basis for more 

advanced algorithms, making it an important concept in the field.



Working

● VPG trains a stochastic policy in an on-policy way. This means that it explores by sampling actions 

according to the latest version of its stochastic policy. The amount of randomness in action selection 

depends on both initial conditions and the training procedure. Over the course of training, the policy 

typically becomes progressively less random, as the update rule encourages it to exploit rewards that it has 

already found. This may cause the policy to get trapped in local optima.

● PPO is an advancement over VPG and addresses its high variance issue by using a surrogate objective. PPO 

generally outperforms VPG in terms of stability, sample efficiency, and convergence speed.



Implementation



Working

Initialization (Lines 1-2):

Initialize the policy parameters (  θ   ) and the value function parameters ( ɸ ).

Main Loop (Lines 2-9):

The algorithm iterates over episodes or iterations, indexed by k.

Data Collection (Line 3):

Collect a set of trajectories (  D    ) by running the current policy (  θₖ    ) in the environment. Trajectories consist 
of state-action pairs and rewards.



Working

Compute Rewards-to-Go (Line 4):

Compute the rewards-to-go ( R   ) for each time step  t in the trajectories. The rewards-to-go is the total 
discounted reward from time step  t onwards till termination for that state.

Compute Advantage Estimates (Line 5):

Using any method of advantage estimation (e.g., subtracting a value function estimate from the Q Value), 
compute advantage estimates ( At   ) based on the current value function (  V =  θ   ).

Compute Policy Gradient (Line 6):

Estimate the policy gradient (  ∇θ   J(θ)) using the advantage estimates ( At   ) and the log probabilities of 
actions ( logπ θ   (a∣s)) according to the current policy. This step calculates how policy parameters should be 
adjusted to maximize expected return.



Implementation



Working

Policy Update (Line 7):

Update the policy parameters using gradient ascent, typically following the standard gradient ascent rule 
 (θ k+1   =θ k   + α   ∇ θ   J(θ)), where α    is the learning rate. Alternatively, another gradient ascent algorithm like 
Adam can be used for the update.

Value Function Update (Line 8):

Fit value function by regression on mean-squared error: typically via some gradient descent algorithm

Iteration (Line 9):

The algorithm proceeds by iteratively collecting data, computing rewards-to-go and advantage estimates, 

estimating policy gradients, updating the policy parameters, and updating the value function. This 

process continues until convergence or a predefined stopping criterion is met, improving the policy to 

maximize the expected return.



Pros and cons

Pros

● simple to understand and implement, 

making it a good starting point for those 

new to RL.

● VPG is an on-policy algorithm that can be 

used for environments with either discrete 

or continuous action spaces

● VPG directly optimizes the expected return 

by maximizing the objective function, 

making it suitable for applications where 

optimizing the policy is the primary goal.

Cons

● VPG often suffers from high variance in the 

policy gradients, which can lead to slow 

convergence and instability during training.

● Can be stuck in local optima

● Unlike value-based methods, VPG does not 

explicitly learn a value function, which can 

limit its ability to generalize and estimate 

the value of states.





Applications

● VPG is an on-policy algorithm.

● VPG can be used for environments with either discrete or continuous action spaces.

● The Spinning Up implementation of VPG supports parallelization with MPI.

● Vanilla Policy Gradient (VPG) and its variants find applications across a wide range of 

domains due to their capability to directly learn policy parameterizations and handle 

continuous action spaces. Here are some notable applications of VPG in various fields:

a. Robotics

b. Game playing

c. NLPs

d. Healthcare

e. Finance

f. Autonomous 

vehicles
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Introduction

● Soft Actor-Critic (SAC) is an Off-Policy Maximum Entropy Deep 
Reinforcement Learning with a Stochastic Actor, jointly developed by UC 
Berkeley and Google. 

● It is considered as one of the most efficient RL algorithms to apply to 
real-world robotics. 

● SAC is model-free, online, off-policy, actor-critic RL algorithm. Computes 
optimal policy that maximizes both the long-term expected reward and 
entropy of the policy. 
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Basic Components

● ACTOR : The actor is responsible for learning the policy.                                   
In SAC, the policy is represented as a stochastic policy,                             
meaning it outputs a probability distribution over actions                                   
for a given state.

● CRITIC : The critic estimates the state-action value                                     
function (Q-function). It evaluates how good it is to be in                                     
a particular state and take a specific action.

30



Basic Components

Actor-Critic methods address the limitations of 
Policy Gradient (lack of foresight) and Q-learning 
(inability to scale to continuous action spaces) by 
combining both ideas into one uniform framework.
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Key Mechanisms

● One of the distinctive features of SAC is its use of entropy                 
regularization.

● Entropy encourages the policy to explore more by adding                 
uncertainty to the action distribution. This prevents the agent                     
from becoming overly deterministic, allowing for more robust               
learning.

● In entropy-regularized reinforcement learning, the agent gets                          
a bonus reward at each time step proportional to the entropy                         of 
the policy at that time step.

1. Entropy Regularization

32



Key Mechanisms

1. Entropy Regularization

33



Key Mechanisms

● To stabilize learning, SAC uses a modification of the Q-network known as the 
"soft Q-network." The soft Q-network penalizes overestimation errors and 
promotes more accurate value function estimation.

2. Soft Q-Network 

3. Clipped Double-Q Learning
● Like the TD3 algorithm, SAC learns two Q-functions instead of one, and 

uses the smaller of the two Q-values to form the targets in the Bellman 
error loss functions.

34



Key Mechanisms

4. Exploration vs Exploitation

● SAC trains a stochastic policy with entropy regularization, and explores in an 
on-policy way. 

● The entropy regularization coefficient 𝛼 explicitly controls the explore-exploit 
tradeoff, with higher 𝛼 corresponding to more exploration, and lower 𝛼 
corresponding to more exploitation.

● At test time, to see how well the policy exploits what it has learned, we remove 
stochasticity and use the mean action instead of a sample from the distribution. 

35



Algorithm Workflow

1. Learning Q

● SAC concurrently learns a policy πθ and two Q-functions Qɸ1, Qɸ2 .

● Both Q-functions are learned with MSBE minimization, by regressing to a 
single shared target.

● There is no explicit target policy smoothing. SAC trains a stochastic policy, 
and so the noise from that stochasticity is sufficient to get a similar effect.

36



Algorithm Workflow

1. Learning Q

● Before we go to the final form of Q-loss, let’s take a moment to discuss how 
the contribution from entropy regularization comes in. Here is the recursive 
Bellman equation for the entropy-regularized Qπ  - 

37

● Approximating the above equation with samples (since it’s an expectation) :



Algorithm Workflow

1. Learning Q

● Putting it all together, the loss functions for the Q-networks in SAC are :

 

       where the target is given by,

38



Algorithm Workflow

 2.   Learning the Policy

● The policy should, in each state, act to maximize the expected future return 
plus expected future entropy.

● The policy makes use of the reparameterization trick, in which a sample from 
πθ (.|s) is drawn by computing a deterministic function of state, policy 
parameters, and independent noise. 

● The reparameterization trick allows us to rewrite the expectation over actions 
into an expectation over noise. 

39



Algorithm Workflow

 2.   Learning the Policy

● The policy is optimized according to :

● Here, squashed Gaussian distribution is used : 

       The tanh in the SAC policy ensures that actions are bounded to a finite range.                
40



Pseudocode

41



Pros and Cons

Pros:

● Stability : By using a soft value function and a stochastic policy, which helps reduce variance in the updates and stabilize the 
learning process.

● Continuous Action Spaces : can handle both deterministic and stochastic policies in such settings.
● Exploration : incorporates an entropy term in the objective function, which encourages exploration. 
● Off-policy learning : It can make efficient use of previously collected experience replay data, improving sample efficiency.

Cons:

● Computationally Intensive : Especially when using large neural networks or dealing with high-dimensional observations.
● Lack of Determinism: SAC policy is stochastic, which may not be suitable for tasks where deterministic behavior is required.

42



Comparison
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Applications

Robotics, Autonomous Systems, Industrial 
Automation.

1. Manipulation with Robotic Arms/Hands:
a. Tasks: grasping, stacking, inserting objects.
b. Resilience: external perturbations and partial observations.

2. Locomotion with Robots:
a. Types: bipedal (walking, running, jumping) and quadrupedal 

(terrain adaptability).
3. Navigation using Vehicles:

a. Environments: complex terrains for aerial and ground vehicles.
4. Gaming Applications:

a. SAC applied to various game scenarios and mechanics.

44
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DDPG: Summary and Key features

DDPG, which stands for Deep Deterministic Policy Gradient, is a model-free, off-policy actor-critic algorithm used 
for reinforcement learning, particularly in continuous action spaces. It is used for applications like gaming, 
autonomous vehicle and robotics.

Actor-Critic Architecture: DDPG uses an actor-critic architecture, where the actor is used to approximate the 
optimal policy directly and the critic is used to approximate the value function. The critic's value estimate is used to 
guide the policy update.

Deterministic Policy Gradient: Unlike other algorithms that output a probability distribution over actions, DDPG is 
designed for situations where the action space is continuous. It uses a deterministic policy gradient to improve the 
policy. The gradient of the expected return with respect to the policy parameters is computed, which guides the 
updates.

Experience Replay: Like Q-learning-based methods such as DQN, DDPG also utilizes an experience replay buffer. 
Past experiences are stored in this buffer and random mini-batches from this buffer are used to train the networks. 
This breaks the correlation between consecutive samples and stabilizes training.

DDPG, which stands for Deep Deterministic Policy Gradient, is a model-free, off-policy actor-critic algorithm used 
for reinforcement learning, particularly in continuous action spaces. It is used for applications like gaming, 
autonomous vehicle and robotics.

Actor-Critic Architecture: DDPG uses an actor-critic architecture, where the actor is used to approximate the 
optimal policy directly and the critic is used to approximate the value function. The critic's value estimate is used to 
guide the policy update.

Deterministic Policy Gradient: Unlike other algorithms that output a probability distribution over actions, DDPG is 
designed for situations where the action space is continuous. It uses a deterministic policy gradient to improve the 
policy. The gradient of the expected return with respect to the policy parameters is computed, which guides the 
updates.

Experience Replay: Like Q-learning-based methods such as DQN, DDPG also utilizes an experience replay buffer. 
Past experiences are stored in this buffer and random mini-batches from this buffer are used to train the networks. 
This breaks the correlation between consecutive samples and stabilizes training.



DDPG: Summary and Key features

Target Networks: DDPG employs target networks, both for the actor and the critic, to further stabilize training. This 

idea was borrowed from DQN. Target networks are essentially copies of the actor and critic networks but with their 

weights frozen. Periodically, these weights are softly updated to the main actor and critic networks' weights.

Exploration: Exploration in DDPG is tackled by adding noise to the action output. The most common noise added is 

Ornstein-Uhlenbeck noise, which introduces temporal correlation, making it suited for problems in continuous 

action spaces.

Batch Normalization: In some implementations of DDPG, batch normalization is applied to different layers of the 

neural networks to ensure that the various inputs are in a consistent range and have zero mean and unit variance. 

This can help in accelerating learning.



Pros

● can handle continuous action spaces.

● actor critic architecture stabilizes training.

● off policy training helps stabilize and increase sample efficiency.

Cons
● ddpg is sample inefficient compared to model based.

● it is highly sensitive to hyperparamter.

● It is not good at exploration.



DDPG Algorithm Initialisation

We need to perform the following steps to initialise DDPG:

1. Initialize the actor network and critic network with random weights.

2. Initialize the target networks with the same weights as the main networks.

3. Initialize experience replay buffer.



For each time step:

a. Select an action using the current policy (actor network) and add noise for exploration.

b. Execute the chosen action in the environment and observe the reward and next state.



c. Store the transition in the experience replay buffer.

d. Sample a random mini-batch of transitions from the replay buffer.



e. Compute the target Q-value using the critic's target network and the 
reward from the transition.

f. Update the critic by minimizing the Mean Squared Error between the 
target Q-value and the predicted Q-value.



g. Update the actor using the sampled policy gradient.

h. Softly update the target networks.



Repeat until convergence or a stopping criterion is met.

DDPG has shown great performance in a variety of tasks, especially those 
with continuous action spaces like robotic control tasks. It combines ideas 
from DQN and policy gradient methods, allowing for effective learning in 
such environments.

DDPG Algorithm Termination and Conclusion



Q/A Session



SARSA Reinforcement 
Learning Algorithm
Group 5



● Q-Function (Action-Value Function): The Q-value of a state-action pair represents the 
expected cumulative reward an agent can achieve.

● Q-Learning follows an off-policy approach, updating Q-values at the current time step 
using the maximum estimated Q-value at the next, regardless of the current policy.

● Update based on temporal difference:

● Backpropagation for function approximation using NNs:

Q Learning



Temporal Difference Learning

Supervised learning: 

Where w is a vector of the parameters of our prediction function at time step t, α is a learning rate 

constant, z is our target value, V (s) is our prediction for input state s

Q-learning update

Each temporal difference will affect all previous predictions -> How do 
we use this for faster convergence?



SARSA

Q-learning with TD

Is maximum of the Q 
function the best 
representation of the next 
state?

No- incorrect initially, 
overestimates later  

SARSA

On policy 
algorithm



The SARSA Algorithm

1. Initialize the start state S
2. Choose an Action A by using some policy (ex. 

greedy)
3. Apply Action A and observe the next State S’ 

and the reward R obtained by reaching that 
state

4. Choose Action A’ based on S’ by using the policy 
on current value of Q(S’, A’)

5. Repeat Steps 2-4 until Terminal State is 
Reached



SARSA vs Q-Learning

SARSA

On Policy: Updates Q-Function Values based on 

the current policy

Q-Learning

Off Policy: Updates Q-Function Values based on 

the maximum expected Q-Value Regardless of the 

current policy
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Hindsight 
Experience Replay

Group 6

Hindsight is 20/20



What is Hindsight Experience Replay?

Imagine you’re playing cornhole where the goal is to get 
your bags on to the board or into the hole (for maximum 
points).

You’re practicing getting the bags in the hole on every shot. 
Your bags keep landing a little to the right of the hole, so 
you adjust your stance, aim, and/or velocity after each 
turn. You eventually make it in the hole, and you try to 
replicate those stance/aim/velocity choices each time so 
you consistently make the hole without error.

This is an example of the human ability to learn from 
mistakes.



What is Hindsight Experience Replay?

Using a standard RL algorithm, there would be no 

reward for throws that do not result in bags that 

land outside of the hole. 

How can we learn from failure? Move the goal post!

Hindsight Experience Replay (HER) is a replay 

technique that considers failed attempts to be 

successful subgoals. The neural network is trained 

based on completion of these subgoals for broader 

training and progress towards the primary goal.



Experience Replay*

During training, an agent stores transition tuples (s
t
, a

t
, r

t
, 

s
t
+1) in a replay buffer.

s
t
 = state

a
t
 = action

r
t
 = reward

S
t
+1 = next state

Batches of experiences are selected from the replay buffer 

at random to train the neural network. 
*As seen in Deep Q-Networks (DQN)



Hindsight Experience Replay

In HER, Universal Value Function Approximators (UVFA) is 
applied so states and goals are taken into consideration, 
training an agent to perform multiple tasks instead of just 
one.

When the agent fails at the primary goal, it considers that 
experience to be a successful attempt at a subgoal.

During the experience replay, the original goal is replaced 
by successful subgoals, which are used to train the neural 
network.

This leads to faster learning based on the “failed” 
experiences.



Pros & Cons of HER

Pros

● Allows for learning when rewards are sparse & binary.
● Avoids the need for complicated reward engineering & domain knowledge.
● Can be combined with any off-policy RL algorithm such as DQN, DDPG, SSC etc.
● Doesn’t require control over distribution of initial environmental states, as with explicit 

curriculum. 

Cons

● Limited to goal-oriented tasks.
● Misleading samples can introduce bias to the learning process (i.e., inaction could be considered 

success).
● Can focus on failed trajectories instead of the goal in some cases.
● Increased computational complexity.



Deep Q-Networks (DQN) with and without HER

RL algorithms are significantly limited with 

sparse/binary rewards.

In a bit flipping environment:

● DQN alone can only solve n < 13

● DQN with HER solves up to n = 50



Deep Deterministic Policy Gradients (DDPG*) 
with and without HER

Given pushing, sliding, and pick-and-place tasks:

● DDPG alone can’t complete the tasks.

● DDPG with count-based exploration makes some progress on the sliding task.

● DDPG with HER completes all tasks.
*DDPG covered by Group 4



Applications of HER

● Primary application is  scenarios with sparse or binary rewards.

● Used with model-free, off-policy algorithms since they are typically used 

to handle environments with sparse or binary rewards and often use 

general experience replay. 

● Can be used in both discrete & continuous action spaces.



References

● Hindsight Experience Replay: https://arxiv.org/pdf/1707.01495.pdf

● Bias-Reduced Hindsight Experience Replay with Virtual Goal 

Prioritization: https://arxiv.org/pdf/1905.05498.pdf
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Understanding the 
REINFORCE Algorithm
A Deep Dive into Policy Gradient Methods

(Group 7)



What is REINFORCE and how does it work?
● REINFORCE stands for "REward Increment = Nonnegative Factor * Offset 

Reinforcement * Characteristic Eligibility," and it was introduced by Ronald 
J. Williams in 1992.

● A machine learning technique that focuses on training a policy in order to 
maximize the expected cumulative reward in an environment.

○ It uses a parametric policy (typically a neural network).

○ Generates a trajectory of states, actions, and rewards.

○ Updates the policy parameters based on the expected return.

● To put it concisely, this is a type of machine learning where an agent 
interacts with an environment and learns to make a sequence of decisions 
(actions) to maximize a cumulative reward. The agent explores different 
actions and learns from the consequences of its actions.



Training Process

● Collect trajectories by interacting with 
the environment.

● Compute returns and rewards.

● Update the policy parameters to 
increase the probability of actions that 
lead to higher rewards.



REINFORCE Pseudocode

● Key Points: 
○ Policy gradient method used in 

reinforcement learning.
○ Focuses on optimizing the policy directly.

● The agent collects samples of an 
episode using its current policy, and 
uses it to update the policy 
parameter θ .



Pros and Cons of REINFORCE

● Advantages:
○ Suitable for high-dimensional 

action spaces.
○ Handles stochastic policies.
○ Converges to a local optimum.

● Disadvantages:
○ High variance in training.
○ Inefficient for long trajectories.
○ Struggles with sparse rewards.

● Comparison to Other RL Algorithms: REINFORCE stands out as a policy 
gradient method, emphasizing direct policy optimization. It is versatile and 
can work in various environments unlike other algorithms. 

○ Q-learning: better suited for discrete action spaces

○ DDPG (Deep Deterministic Policy Gradient): better suited for precise control in continuous 
action spaces



Applications of REINFORCE

● Model-free.

● Suitable for discrete and continuous state/action spaces.

● Used in on-policy setting

● Real World Examples:

○ Training agents for playing games.

○ Robot control.

○ Natural language processing tasks.
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learning. Analytics Vidhya. 
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press.
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QR-DQN Learning 
Group 8



Deep Q-Network

Immediate Reward

(Sₜ, Aₜ) → Env → Rₜ₊₁, Sₜ₊₁

Total Future Reward

Qₜ = Rₜ₊₁ + Rₜ₊₂ + ….. + Rₜ₊ₜ

Discounted Future Reward

Qₜ = Rₜ₊₁ + ℽQₜ₊₁



● Traditional Deep Q-Networks (DQNs) learn to estimate the expected value of taking a given action in a given state. 
This expected value is often referred to as the Q-value.

● Quantile Regression DQN (QR-DQN) is a variant of DQN that learns to estimate the quantiles of the Q-value 
distribution. 

● This means that QR-DQN learns to estimate the probability that the Q-value will be greater than a certain threshold.

Why Perform Quantile Regression?



QR-DQN Working

● QR-DQN uses the same architecture as traditional DQN, 
but with a few modifications.

● Output layer of the QR-DQN is a quantile regression 
network. This network learns to estimate the quantiles of 
the Q-value distribution.

● QR-DQN is trained using the same experience replay 
procedure as traditional DQN. However, the loss function 
used to train the QR-DQN network is different.

● The QR-DQN loss function is designed to minimize the 
difference between the predicted quantiles and the actual 
quantiles of the Q-value distribution.



QR-DQN Flow

Step 1: Agent interacts with the environment and takes an action

Step 2: Agent observes the new state and reward

Step 3: Agent stores its experience in a memory buffer

Step 4: Agent samples from the memory buffer and trains the QR-DQN network

Step 5: QR-DQN network learns to estimate the quantiles of the Q-value distribution

Step 6: Agent uses the QR-DQN network to select actions in the environment



Advantages and disadvantages

● QR-DQN addresses the uncertainty in Q value 
estimates - even in uncertain environments this 
can result in strong or certain model.

● With help of different quantiles in the distribution, 
exploration can also be better included even in 
less rewarding regions.

● Due to which even if outliers occur our model 
become less sensitive to it - more robust.

● It is more adaptable because quantile values are 
learnt from the data not pre fixed

● As the data is updated, it also updates the 
distributions and fine tunes them, which makes it 
more adaptable.

● It needs more computational power as it is 
dynamically updating the quantile number and 
values

● The higher the quantiles - the more accurate the 
picture of complex data ; but it also results in the 
higher the number of quantiles - higher the 
computational power - that gives slower 
convergence

● It requires proper and large number if samples to 
learn well and perform

● It is very sensitive to number of quantiles and due 
to its distribution nature, if quantiles are high - it is 
most likely going to overfit



Applications

As we have already learnt any environment with good uncertainty is a good fit for QR-DQN:

● Stock markets and finance trading: Because QR-DQN represents the entire distribution using quantiles, it 
captures the environment along with its uncertainties and gives out a state-action pair. Considering the amount of 
uncertainty in trading, this fine tunes itself and becomes robust when trained properly.

● Autonomous vehicles: QR-DQN can shine in this region as uncertainty on the roads is definitely certain and we 
need the model to be more robust when faced with situations like adverse weather conditions or traffic.

● Datacenter facility Failure: As we know that it adapts it changing environment, if a facility had to break downit 
dynamically allots the resources to mitigate the impacts of the failure which results in efficient and risk aware decision 
making.

● Price optimization in retail: Given proper historically relevant data, QR-DQN can estimate the distribution function; 
through which one can redefine their inventory and also mark down or up the prices looking at the estimated demand 
and supply.

The algorithm is hard to set up and needs strong understanding in distributional statistics. QR-DQN can over engineer in 
certain environments and using a traditional RL algorithm can do better in such scenarios. It is essential to first evaluate the 
need of the algorithm in given task and use.
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TQC AND ITS 
WORKING
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WHAT IS TQC?
● The overestimation control is coarse – impossible to take the minimum over a 

fractional number of approximators

● Aggregation with min ignores all other estimates except for the minimal one, 
diminishing the power of the approximator.

●  Builds on SAC, TD3 and QR-DQN.

● Quantile regression to predict a distribution for the value function.

● Truncates the quantiles predicted by different networks.
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IDEALOGY
● TQC blends 3 ideas:

○ Distributional representations of the critic

○ Truncation of overestimation of critics

○ Ensembling of multiple critics without wastage
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WORKING
●  “Decompose” the expected return into atoms of distributional return.
● Truncate the approximation of the return distribution to control 

overestimation.
● Ensemble multiple distributional approximators to improve Q-value 

estimation.
● Non-truncated critics’ approximations for policy optimization and 

truncate target return distribution at value learning stage – prevents 
errors from propagating to other states and eases policy optimization.



Copyright © 2023 Arizona Board of Regents

WORKING (contd.)
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COMPARISION WITH 
OTHER 
ALGORITHMS
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SINGLE STATE MDP
● Evaluate bias correction techniques in a single state continuous action infinite 

horizon MDP.

● TQC can achieve the lowest variance and the smallest bias of Q-function 
approximation among all the competitors. 
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COMPARATIVE EVALUATION
● Comparing with original implementations of SAC, TrulyPPO and TD3.

● Evaluate the performance every 1000 frames as an average of 10 
deterministic rollouts.

● TQC performs consistently better than any of the competitors. 
● Also improves upon the maximal published score on four out of five 

environments
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TQC – Pros and Cons
● Improvement over existing off policy algorithms like DQN, SAC, QRDQN and 

TD3. 
● Existing work only focused on Discrete action space; Recent work focus on 

distributional networks like QRDQN, Implicit Quantile Network and Fully 
Quantile Network but they focused on their architecture alone and couldn’t be 
used in tandem or as a direct improvement on existing off policy algorithms by 
improving their Q functions. 

● The biggest advantage of TQC is its modularity which allows it to work with 
algorithms which work on both discrete and continuous action spaces. 

● The most prominent disadvantage is it adds to the computational complexity 
of already complex algorithms. 
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Applications
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Applications of TQC
● Applied in both model-free settings where the agent learns directly from 

interactions with the environment.
● Can handle both continuous and discrete state and action spaces.
● Used in off-policy settings, allowing it to leverage past experiences efficiently 

for learning.
● Used in effectively handling stochastic environments by modeling conditional 

quantiles.
● Balances exploration and exploitation effectively, adapting to uncertainty 

levels.
● Applied in robotics for control tasks, where continuous action spaces and 

real-world uncertainties are common.
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Applications of TQC
● Enhancement of performance of agents in games, especially in complex and 

strategic game environments.
● Used in finance for risk assessment, portfolio management, and derivative 

pricing due to its ability to model non-Gaussian returns.
● Improvement of performance of chatbots and dialogue systems in natural 

language processing tasks.
● Employed in anomaly detection for identifying unusual patterns and events in 

various domains like network security and fraud detection.
● Helping optimize resource allocation, sensor placement, and decision-making 

in environmental monitoring and climate modeling by managing uncertainties.
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What is ARS?
• Augmented Random Search (ARS) is a reinforcement 

learning algorithm used for solving continuous control tasks. 

• It is a model-free, black-box optimization technique that does 

not require access to the gradient of the objective function, 

making it suitable for problems with non-differentiable or 

unknown dynamics.



Copyright © 2023 Arizona Board of Regents

• Random Search is one of the simplest and oldest optimization 

methods for derivative-free optimization 

• Random search chooses a direction uniformly at random on the 

sphere in parameter space, and then optimizes the function along 

that direction

• Basic random search simply computes a finite difference 

approximation along the random direction and then takes a step 

along this direction without using a line search

Basic Random Search



Copyright © 2023 Arizona Board of Regents



Copyright © 2023 Arizona Board of Regents

How does ARS work?
• Start with a Random Policy: Begin with a random way of doing tasks.

• Experiment with Actions: Try out various random actions (like movements of 

a robot's limbs).

• Measure Performance: See how well each action performs the task (like 

measuring how far the robot moves).

• Make Small Changes: Adjust the random actions slightly (perturbations).

• Repeat Exploration: Try the task again with these slightly changed actions.

• Learn from Results: Figure out which changes led to better performance.

• Update Actions: Modify future actions based on what worked well.

• Repeat and Refine: Keep repeating these steps, gradually improving the task 

performance through trial and error.
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Pros of ARS (Augmented Random Search) 

• Efficient Exploration of Policy Space: ARS utilizes a random search strategy to efficiently explore the 
policy space, allowing it to quickly sample a diverse set of policies. 

• Low Data Requirements: ARS often requires fewer samples or interactions with the environment 
compared to gradient-based algorithms, making it more sample-efficient. This can be crucial in 
domains where collecting data is expensive or time-consuming.

• No Gradient Calculations: Unlike gradient-based methods, ARS does not require gradient 
calculations. This can be advantageous in scenarios where gradients are hard to compute or are 
noisy, making it a suitable choice for non-differentiable or discontinuous optimization problems.

• Potential for Discovering Novel Solutions: The random search strategy employed by ARS may lead to 
the discovery of unconventional or innovative policies that might not be apparent through more 
traditional optimization approaches
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Cons of ARS (Augmented Random Search) 

• Sensitivity to Hyperparameters - ARS agent to navigate a maze  -> learning rate too high or too low 
will fail to provide results

• Limited to Policy Optimization - ARS might struggle to find a good strategy in chess whereas 
value-based methods like Q-learning or AlphaZero excel

• Lack of Theoretical Guarantees - In robotics, where precise control is essential, the lack of theoretical 
guarantees can be a drawback

• Limited Memory for Exploration -  Consider an agent learning to play a complex video game where 
information from several time steps is essential. ARS's limited memory could hinder its ability

• Not Suitable for All Environments - In a robotics task involving stacking objects in a specific order, 
ARS might struggle because it lacks the capacity for learning hierarchical representations, which is 
better suited to hierarchical reinforcement learning methods.
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Applications
• Environment monitoring in drones.

• Decision-making in autonomous vehicles in dynamic and complex 

environments.

• Recommendation systems to generate personalised 

recommendations.

• Training agents in video games.

• Optimizing the control of manufacturing and other automation 

processes in the industries.
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Recurrent PPO: LSTM 

● Agent model now has LSTM module that feeds its hidden state to the (actor/critic) modules 
● Meant to incorporate memory of state information 



Recurrent PPO: Training Modifications 

● Careful calculation of advantage estimator 
● We  can only use policy gradient were samples are sequentially sampled  Not random 

Advantage Estimate for 
Recurrent Networks 



Key Advantages of Recurrent PPO
Sample Efficiency: 

1. While on-policy methods may require more samples, in robotics, ensuring safety and 
effectiveness outweighs sample efficiency concerns.

Overcoming Model Mismatch: 

1. Real-world environments often deviate from simulations. Recurrent PPO excels in handling 
these discrepancies, learning directly from real-world experiences.

Considerations: 

1. Continuous State/Action Spaces: Well-suited for tasks with continuous state and action 
spaces.

2. Safety-Focused Environments: Ideal for environments where safety and stability are 
paramount.



Recurrent PPO: Pros 
● The agent may maintain and update an internal memory or context of previous. 
● Enhances learning in scenarios where states are only partially observable or rewards are 

delayed.
● Recurrent PPO is well-suited for large-scale training because, when implemented effectively, 

it can be parallelized and deployed across multiple processors or distributed computing 
systems to take advantage of their combined processing power.



Recurrent PPO: Cons
● It can take a lot of time and computing power to train PPO agents for difficult tasks or in 

high-dimensional state spaces.
● Sensitive to the selection of hyperparameters.
● The use of LSTM in the baseline is notably unstable. 



Applications 

● Extension of PPO for tasks with sequential or time-dependent data.
● Ideal for scenarios where current actions effectiveness is influenced by past actions and 

observations.

Few Applications :
● Robotics control tasks involving sequences (e.g., robotic hand handling items)
● Games demanding memory from past actions (e.g., card games, DOTA 2)

Why Recurrent PPO in Robotics?
● Safety and Stability: Reduces the risk of dangerous or costly mistakes, crucial in 

safety-critical applications.
● Adaptability to Dynamics: Well-suited for complex and unpredictable physical environments, 

eliminating the need for precise modeling.
● Continuous Learning: Allows for seamless adaptation to varying task requirements.
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● Dueling DQN (Deep Q-Network) is an advanced variant of the traditional DQN in Reinforcement 
Learning (RL).

● Key Components
Dueling DQN introduces a novel architecture, splitting the Q-value into two components:

●
○ Value Function (V(s)): Represents the expected cumulative future rewards from a given state, 

irrespective of the chosen action.

○ Advantage Function (A(s,a)): Captures the advantage of taking a specific action in a given state 
compared to the average action in that state.

● Key Innovation 
○ Dueling DQN decouples value and advantage functions, enabling more efficient action-value 

estimation in RL.

Introduction: 
Dueling DQN



Dueling DQN Architecture: 
Motivation

● Motivation
○ For many states, estimation of state value is more important, comparing with 

state-action value. 
○ Better approximate state value, and leverage power of advantage function



Working of Dueling DQN
● Dueling DQN works by decomposing the Q-function into two separate functions: the state-value function V(s) 

and the action-advantage function A(s,a).
● The state-value function estimates the expected reward for being in a given state, regardless of the action taken.
● The action-advantage function estimates how much better it is to take a given action over the average action.
● The following mathematical equation describes the working of Dueling DQN:

Q(s,a) = V(s) + A(s,a) 

where,
○ Q(s,a): Q-value for state s and action a
○ V(s): state-value function for state s 
○ A(s,a): action-advantage function

● The V(s) is estimated using CNN with single 
output, whereas the A(s,a) is estimated using 
CNN with multiple outputs, one for each action.



Working of Dueling DQN
● Value Aggregation

○ The state-value V(s) is not directly used to make action decisions; Instead it is aggregated to help compute 
the Q-values. Typically, the average of advantage values for all actions is added to V(s). Hence,

Q(s,a) = V(s) + A(a,s) - Avg[A(a’,s)] 
● Decision-Making

○ To make decisions, the agent selects actions based on the computed Q-values. The action with the highest 
Q-value in a given state is chosen as the optimal action. 

● Training
○ Dueling DQN uses Experience Replay and Target Network to train the neural network efficiently.
○ Loss function: The mean squared error between the predicted Q-values and the target Q-values. 

Loss = E[(Q(s, a) - (r + γ * max(Q(s', a'))))^2]   
where, 

r = reward received for taking action a     
γ =  discount factor 
Q’(s’, a’) = Predicted Q-value for the next state s’ and action a’ 



Dueling DQN Algorithm
1. Initialize two neural networks, one for the state-value 

function and one for the action-advantage function.
2. Initialize a replay memory.
3. At each time step:

● Take an action a in the current state s.
● Observe the next state s' and the reward r.
● Store the transition (s, a, r, s') in the replay 

memory.
● Sample a batch of transitions from the replay 

memory.
● Calculate the target Q-values for the sampled 

transitions using the Bellman equation.
● Update the state-value network and the 

action-advantage network using the loss function.
4. Repeat step 3 until the agent reaches convergence.



Pros & Cons

Pros Cons

- Improved performance - Computationally intensive

- Efficient value estimation (prevents 
overestimation) - Hyperparameter tuning

- Better handling of large action 
spaces

- Not as well suited for continuous action 
spaces

- Improved learning stability - Data efficiency

- More robust in complex 
environments - Risk of overfitting

#


Properties & Requirements 
of Dueling DQN

● Properties
○ Model-free learning
○ Off-policy learning
○ Discrete state/action spaces

● Requirements
○ Deep neural network
○ Experience replay
○ Target network



Applications of Dueling DQN

● Training robots to navigate in complex environments

● Controlling robotic arms or grippers to manipulate objects with precision

● Managing Investment portfolios by selecting best actions (buy, sell, hold)

● Personalized treatment planning for patients by optimizing drug dosages or 
therapy schedules

● Optimizing ad placement for maximum user engagement

● Atari games & board games such as chess, go, or other strategic games 
where the algorithm can learn optimal strategies 
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Introduction

● Advantage Actor Critic (A2C) is a policy gradient RL algorithm which uses the 
combination of policy-based and value-based methods to help agent to learn an 
optimal policy based on the environment.

● It comprises of three key components:

○ Actor - Controls the behaviour of the agent i.e. helps agent in deciding next 
action based on current state.

○ Critic - Judges the actor’s decisions and identifies how good the action taken 
by actor is.

○ Advantage - Helps in quantifying the correctness of the decision taken by 
actor based on critic’s prediction.



How it works ?



A2C Architecture

Advantage A (st, at)



Advantage Function

● This function helps in quantifying how much better or worse the action (at) is 
when compared to critic’s estimate for a given state (st).



Actor and Critic Network

Actor Network:

● It is a policy network which helps 
agent decide next action based on 
current state. 

at = πΘ (st)

● The actor network is updated using 
the policy gradient method.
∇ΘJ(Θ) = E[∇Θ[log πΘ (at|st) A(st, at)]]

● To favor exploration, A2C also uses 
entropy term to the gradient 
calculation.

∇ΘJ(Θ) = E[∇Θ[log πΘ (at|st) A(st, at) - βH(πΘ
(st))]]

Critic Network:

● It is a value network which helps in 
judging the correctness of the 
action taken by the actor network 
based on current state.

Expected return = Q (st, at)

● The critic network is updated using 
critic loss to improve the expected 
return for the given state.

Δω = α∇ω(rt+1 + γV (st+1) - V (st))



Pros and Cons



Pros: Cons:

● Only need to estimate V function, don’t 
need to estimate Q function.

● The parameters of actor 𝛑(s) and critic 
V𝛑(s) can be shared.

● A2C might require a large number of samples to 
learn effectively. This makes it slow to converge 
and sensitive to exploration strategies.

● A2C is based on gradient descent. The direction 
of the steepest improvement is prone to rapid and 
unpredictable changes depending on the actor, 
the critic, and the environment which can lead to 
oscillations, divergence, or poor performance.

● A2C can struggle to generalize and transfer its 
knowledge to new situations.

● A2C is a black-box algorithm meaning it does not 
provide any explicit or intuitive rationale for its 
actions or values.

● A2C is a goal-oriented algorithm, which means it 
tries to maximize its reward, regardless of the 
potential side effects or trade-offs. This can raise 
ethical and social concerns. 



Properties and Use Cases



Properties:

● It uses stochastic policies and can't 
use recurrent policies.

● It can work with both discrete and 
continuous action spaces.

● It uses multiple workers to avoid the 
use of replay buffer.

● It is designed to work primarily on 
CPU.

● It is a on-policy, model-free RL 
algorithm.

● It uses N-step update.

Use Cases:

● Robotics : Used to train Robots to 
perform complex tasks, such as 
grasping and manipulation.

● NLP : Used to train chatbots to 
interact with humans in a more 
natural and intuitive way.

● Gaming: Used to train game agents 
(eg: chess, go).

● Finance: Used to develop trading 
algos that can learn from market 
data and adjust their strategies 
based on changing market 
conditions.
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Background
Reinforcement Learning Methods

Value Based methods: map each state-action pair to a value, which represents the expected cumulative reward the agent 
can obtain by following a specific action-selection strategy.

Policy Based methods: directly optimize the policy without a value function. The goal is to maximize the performance of 
the parameterized policy using gradient ascent.

A2C (Advantage Actor-Critic)
It a synchronous RL algorithm in which multiple agents run in parallel to collect experiences from the environment.
Drawbacks: 

- High variance due to reliance on policy gradients which can lead to slow and unstable learning.
- Sensitivity to hyperparameters.

DQN (Deep Q-Network)
It is a deep reinforcement learning algorithm that focuses on estimating the action-value function (Q-function).
Drawbacks: 

- Lack of handling continuous action spaces.
- Sample inefficiency.
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How does A3C work?

A3C stands for Asynchronous Advantage Actor Critic
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Actor - Critic

The goal of the Actor is in optimizing the policy (“How to act?”), and the Critic aims at 
optimizing the value (“How good action is?”)

● The actor takes as input the state and outputs the best action. It essentially 
controls how the agent behaves by learning the optimal policy (policy-based). 

● The critic, on the other hand, evaluates the action by computing the value 
function (value based).

It stands for two neural networks — Actor and Critic
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What is Advantage?

Q values can, in fact, be decomposed into two pieces: the state Value function V(s) and 

the Advantage value A(s, a):

Q(s,a)=V(s)+A(s,a)   =>   A(s,a)=Q(s,a)−V(s)   =>   A(s,a)=r+γV(s’)−V(s)

Advantage function captures how better an action is compared to the others at a given 

state, while as we know the value function captures how good it is to be at this state.
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“Asynchronous”
In A3C we have a global network with 
multiple agents having their own set of 
parameters. 

It consists of multiple independent 
agents(networks) with their own weights, 
who interact with a different copy of the 
environment in parallel.

It relies on  parallel actor-learners and 
accumulated updates for improving training 
stability.

The key difference from A2C and DQN is the Asynchronous part.
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Important to note!
The updates are not happening simultaneously and that’s where the 
asynchronous part comes from.

The policy and the value function are updated after every tmax actions or when 
a terminal state is reached.

After each update, the agents resets their parameters to those of the global 
network and continue their independent exploration and training for n steps until 
they update themselves again. Therefore, the flow of information exists between 
the agents themselves through the global network.
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Properties and Requirements
● Environment: Needs an interactive model.
● Multiple Agents: A3C uses parallel agents in multiple environment instances.
● Policy and Value Function: A3C keeps a policy and value function estimate, 

needing function approximators like neural networks.
● Computation Resources: A3C is suitable for parallel computation on 

multi-core CPUs and can be GPU-implemented.
● Reward Signal: A3C needs a clear reward signal from the environment for 

learning.
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Pros and Cons of A3C
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Pros and Cons of A3C
PROS:

● Faster, Simpler and more robust in standard RL tasks as compared to policy gradients 

and DQN

● The A3C agent learns the achievement of higher scores, making learning process 

better.

● A3C consists of multiple independent agents(networks) with their own weights, who 
interact with a different copy of the environment in parallel. Thus, they can explore a 
bigger part of the state-action space in much less time than A2C.

CONS:

● The main drawback of asynchrony is that some agents will be playing with an older 
version of the parameters.
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Applications of A3C

Game Playing
Achieved Superhuman 

performance

Real world Autonomous Driving, 
lane following, decision-making 

at intersections

Robotic Controls
Especially in complex and dynamic 

environments.
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Applications of A3C
Being well-suited for environments with a large state or action space, A3C can be used to perform the 
following tasks:

- Recommendation systems: Optimize content recommendations to users. It can help personalize 
recommendations based on user behavior and preferences. 

- Natural language processing: Train NLP models to generate text, translate languages, or perform 
dialogue generation tasks.

- Resource Management: Applications involving resource allocation and management, such as data 
center optimization, dynamic pricing, or energy management.

- Healthcare: Used for medical image analysis, drug discovery, and optimizing treatment plans. It can 
help in making predictions and recommendations in healthcare settings.
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GENERATIVE ADVERSARIAL 
IMITATION LEARNING 

(GAIL)
Presented by Group-15:
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Reinforcement Learning



Reinforcement Learning

Reward



RL: Reward Function: A function could provide feedbacks on action taking (resource of improvement)

RL needs Reward functions, hard to get in realistic scenarios 

F(s) ⇒ R



RL:

IRL(Inverse):

Reward Function: A function could provide feedbacks on action taking (resource of improvement)

 RL needs Reward functions, hard to get in realistic scenarios 

How to overcome the “headache” of not able to explicitly define the reward function ?

⇒ Let’s infer the reward function from expert data, and then based on that reward function, optimize policy



RL:

IRL(Inverse):

Model based/Model free

Value Iteration / Policy Gradient 

Let’s infer the reward function from expert data, and then based on that reward function, optimize policy

MaxEnt IRL

Linear IRL

Learning a reward function is already Challenging, then learn RL on it: Expensive



IRL(Inverse):
Let’s infer the reward function from expert data, and then based on that reward function, optimize policy

MaxEnt IRL

Linear IRL

reward function is assumed to be a linear combination of known features

: weight vector to be learned

: feature vector represented from state s



IRL(Inverse):
Let’s infer the reward function from expert data, and then based on that reward function, optimize policy

MaxEnt IRL

Linear IRL

Learning a reward function is already Challenging, then learn RL on it: Expensive

Instead of explicitly recovering the reward function:

A discriminator differentiates between the expert's trajectories and the trajectories produced by the current policy (Generator)

GAIL:



GAIL From Generative Adversarial Network

Real/Fake

Generato
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Real
data(Image)

Generative Adversarial Networks (GAN):
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Real/Fake

Generative Adversarial Networks (GAN):

Z

Latent 
Vector

GAIL From Generative Adversarial Network



GAIL: Architecture

• GAIL learns a policy by simultaneously training it with a discriminator that aims to 
distinguish expert trajectories against trajectories from the learned policy.



Without Reward How does it use TRPO/PPO?

1. It take the Discriminator score as the collected reward 
2. Then apply Policy Gradient method to optimize Policy (Generator)

GAIL:



GAIL: Pros and Cons
• Pros:

•Get rid of explicitly designing reward function

•Directly extract a policy from data

•Model-free imitation learning algorithm

•Sample efficient in terms of expert data

• Cons:
•Sample inefficient in terms of environment interaction – on par with TRPO

•Assuming similar problems of GANs:

Mode collapse

Hard to converge

•Require Expert Dataset 



GAIL: Requirements
• Requirements:

•Problem Modeling: MDP

•Main requirements being:

Large sample of Expert trajectories/demos (high cost)

Discriminator model

Policy Network (Generator)



GAIL: Examples

Da L, Wei H. CrowdGAIL: A spatiotemporal aware method for agent navigation[J]. Electronic Research Archive, 2022, 31(2).

https://docs.google.com/file/d/1kUtkv7RlGBIMtaJgga2lVh_ES8_YIN_W/preview


QUESTIONS?

Ho, Jonathan, and Stefano Ermon. "Generative adversarial imitation learning." Advances in neural information processing systems 29 (2016)- 2770 citations


