
Intro to ROS
CSE574 Planning and Learning Methods in AI

Elena Oikonomou

Contents

Intro ROS Ecosystem
• What is ROS?
• How to create/build

your packages.

• Fundamental concepts
• Basic commands
• Develop ROS nodes

Part 1 Part 2
Simulation

• Rviz
• Control a robot in

Gazebo.

Part 3

2

Contents

Intro ROS Ecosystem
• What is ROS?
• How to create/build

your packages.

• Fundamental concepts
• Basic commands
• Develop ROS nodes

Part 1 Part 2
Simulation

• Rviz
• Control a robot in

Gazebo.

Part 3

3

What is ROS?
• ROS (Robot Operating System)

Capabilities CommunityToolsPlumbing

• Process management
• Code organization
• Communication

between
components

• Simulation
• Visualization
• Debugging
• Plotting
• Logging
• …

• Control
• Planning
• Manipulation
• Perception
• …

• Software distribution
• Tutorials
• Support fora
• Conferences
• …

4

is a set of software libraries and tools that help us build robotics applications!

What is ROS?

Path
Planner

Laser
Scanner

LocalizationCamera

Motor
Driver

Controller

Motor
Driver

Goal

Laser data

RGB image

Robot
location

Waypoints

Motor
commands

5

Features/Benefits
Distributed
computation

• Divide software into small
stand-alone parts.

• Programs can run on
multiple computers and
communicate over the
network.

Software reuse

Standard packages
with implementations
of many algorithms.

Supports multiple
languages

C++, Python

Lisp, Java, Lua, MATLAB,
..

De facto standard

for robotics
programming.

Open Source

Free to use.

Communication
protocol

Processes communicate
over defined API.
(ROS messages, services,..)

6

Versions

ROS 1 ROS 2

• ROS 1 was built for research.
• ROS 2 aims to address

limitations for commercial
usage.

• Core concepts still the same!

Notes

– Security
– Real-time Computing
– Embedded Systems
– …

7

Installation

Platforms Distributions Ways to Install

(Ubuntu 20.04)

ROS Noetic

Latest ROS 1 Distribution • On Ubuntu PC
• Dual-boot with Ubuntu
• Docker *
• Virtual Machine
• WSL on Windows

8

ROS Workspace
• catkin is the official ROS build system.

• A catkin workspace is a folder where you modify, build, and install catkin packages.

catkin_ws

src build devel

• Contains the source
code of catkin packages.

• Where you clone, create
and edit source code for
the packages you want
to build.

• Where CMake is
invoked to build the
packages in the source
space.

• Where build targets are
placed (prior to being
installed).

Work here!

Don’t touch

9

ROS Workspace
• All software is organized into (catkin) packages.

catkin_ws/
 build/
 devel/
 src/
 CMakeLists.txt
 Package 1/
 CMakeLists.txt
 package.xml
 …
 Package N/
 CMakeLists.txt
 package.xml
 …

For a package to be considered a catkin package, must contain:

• CMakeLists.txt -- info on how to build the package

• package.xml -- metadata

• Only 1 package in each folder (no nested packages)

Package

10

CMakeLists.txt scripts

*.py
*.sh

msg

*.msg

srv

*.srv

include

*.h

launch

*.launch

config

*.yaml

src

*.cpp

Package.xml

Configuring Your ROS Environment

$ source /opt/ros/noetic/setup.bash

• Source your ROS environment *

$ source ~/catkin_ws/devel/setup.bash

• Source your catkin workspace

You need to run these commands on every new shell
OR

could add them to your .bashrc file.

$ gedit ~/.bashrc

• Paste the following at the end of the file & save

source /opt/ros/noetic/setup.bash
source ~/catkin_ws/devel/setup.bash
echo "ROS Noetic & catkin_ws sourced!"

$ source ~/.bashrc

• Open .bashrc file to edit

• Source .bashrc for changes to take effect

How to edit your .bashrc file

optional message

* Sets all the path variables to use
the ROS built-in packages.

11

Building Your ROS Packages

$ catkin build

• Step 2: Build your packages Use catkin build instead of catkin_make!
Don’t mix the two!

• Step 3: Make the workspace visible to the file system

$ source devel/setup.bash

$ cd ~/catkin_ws/

• Step 1: Navigate to your catkin workspace

12

Installing Existing Packages

$ sudo apt update
$ sudo apt install ros-noetic-<package_name>

• Install Debian packages

$ cd ~/catkin_ws/src
$ git clone https://github.com/<username>/<repo>.git

• Install packages from GitHub

• Build your packages & source the workspace!

13

<ROS_distro>

Creating a ROS Package

$ catkin_create_pkg my_package std_msgs rospy roscpp

• Step 2: Create your packages with optional dependencies

$ cd ~/catkin_ws/src

• Step 1: Navigate to source space dir of your catkin workspace

$ catkin_create_pkg <package_name> [depend1] [depend2] [depend3]

Example:

• Step 3: Build your packages & source the workspace! These first-order dependencies are stored
in the package.xml file.

14

Info on ROS packages

$ rospack find <package_name>

• rospack is the ROS package management tool.

15

$ rospack depends <package_name>

$ rospack depends-on <package_name>

• Find the absolute path to a package

• Get a list of all the package’s dependencies

• Get a list of packages that depend on the given package

Common uses:

Contents

Intro ROS Ecosystem
• What is ROS?
• How to create/build

your packages.

• Fundamental concepts
• Basic commands
• Develop ROS nodes

Part 1 Part 2
Simulation

• Rviz
• Control a robot in

Gazebo.

Part 3

16

ROS Nodes

$ rosrun <package_name> <executable_name>

• A node is a program that performs some computation.

• An executable file within a ROS package.

• Single-purpose.

• Run a node:

17

• Get a list of running nodes:

$ rosnode list

• Get information about a node:

$ rosnode info <node_name>

.py or .cpp

ROS Forms of Communication

18

Topics ActionsServices

• Message exchange
• For continuous data stream

• Request-response type
• Blocks program execution
• For quick computations

• Non-blocking
• Sends progress feedback to the client
• For goal-oriented tasks

ServerClient

response

request

ROS Topics

$ rostopic list

• ROS topics transport information between nodes.

• Nodes can publish and/or subscribe to a topic.

• Each topic has a specific ROS message type.

• List active topics:

19

• Show information about a topic:

$ rostopic info /topic_name

• Show current contents of a topic:
$ rostopic echo /topic_name

Node 1 Topic

messages

‒ There can be multiple publishers and subscribers to a topic.

Publisher SubscribersTopic

messages

Node 2

messages

ROS Messages

$ rosmsg show <message_type>

• Each topic has a specific ROS message type.

• Data structures used to exchange data between nodes.

• Display the fields in a ROS message type:

20

Topic

messages messages

geometry_msgs/Twist.msg
 Vector3 linear
 Vector3 angular

To express velocity:

field type name

ROS Master

$ roscore

• Enable nodes to communicate with each other.

• All nodes need to register to Master at startup.

• Provides the Parameter Server.

• To start the ROS Master:

21

Node 1 Node 2

Master

Registration
• I will publish on

/topic_name

Registration
• I will subscribe

to /topic_name

Topicmessage data message data

Fun Quiz

22

CBA

Question 1

23

A physical robot
component (like a

sensor or actuator).

What is a ROS node?

A graphical tool to
visualize the

communication
between ROS topics.

A computational
process that performs a

task.

B

BA

Question 2

24

ROS Nodes can use any of the fundamental types of communication
(Publisher, Subscriber, Services and Actions).

Often called: "Publisher Node", "Subscriber Node“, “Server”, etc.

Can a ROS node use a combination of these types?

Yes No

A

A

Question 3

25

How many message types can be published to a topic?

B

1An arbitrary amount.

B

CBA

Question 4

26

Any number of nodes
can publish, if the

message has the right
type.

How many nodes can publish to a single topic?

Only one at a time. The amount is defined
by the topic.

C

Example
turtlesim

27

Example - turtlesim

$ roscore

• Start ROS Master

28

$ rosrun turtlesim turtlesim_node

• On a new terminal, run the turtlesim_node

• On a new terminal, run the keyboard teleoperation

$ rosrun turtlesim turtle_teleop_key

• Press the arrow keys to move the turtle.

(Ensure the terminal with the teleoperation is in focus.)

package name executable name

Example - turtlesim – Node Info

29

• Get information about the turtlesim
node

$ rosnode info /turtlesim

turtlesim
publishes on these topics

turtlesim
subscribes to these topics

turtlesim
can be configured using
these services

$ rosnode list

• Show list of running nodes

Example - turtlesim – Topic Info

30

• List active topics

$ rostopic list

• Show info about the /turtle1/cmd_vel topic:

$ rostopic info /turtle1/cmd_vel

• Show contents of /turtle1/cmd_vel topic:

$ rostopic echo /turtle1/cmd_vel

message type

Example - turtlesim – rqt

$ rosrun rqt_graph rqt_graph

• Show computation graph

31

nodes

namespace

topics

Example - turtlesim – rqt

$ rqt

• Run rqt tools

32

• Topic Monitor Plugin
Plugins → Topics → Topic Monitor

• Plot Plugin

• Image View Plugin

Plugins → Visualization → Plot

Plugins → Visualization → Image View

Example - turtlesim – Publish message

33

• Publish messages to a given topic from terminal

$ rostopic pub [topic] [msg_type] [args]

$ rostopic pub /turtle1/cmd_vel geometry_msgs/Twist -r 1 -- '[2.0, 0.0, 0.0]' '[0.0, 0.0, -1.8]'

topic name message type rate 1Hz
(optional)

data

Example
Simple Publisher & Subscriber

34

ROS Publisher & Subscriber (Python)

35

pub = rospy.Publisher(‘topic_name’, message_type, queue_size)

• Publishing to a topic (write messages)

pub.publish(message)

• Subscribing to a topic (read messages)

sub = rospy.Subscriber(‘topic_name’, message_type, callback_function)

Example - Simple Publisher & Subscriber

36

Package name

tutorial

CMakeLists.txt scripts

talker.py
listener.py

Package.xml

$ cd ~/catkin_ws/src/tutorial/scripts

• Important Note: You need to make Python scripts executable!

$ chmod +x *.py

Example - A Simple Publisher Node

37

ensures it is executed as a Python script

declares that the node will publish to the
chatter topic, using the message type String

talker.py

registers with Master

publishes a string to the chatter topic

to loop at specified frequency

Example - A Simple Subscriber Node

38

listener.py

declares that the node will subscribe to
the chatter topic of message type String

field type name

ROS Launch

39

• Starts multiple ROS nodes

• Sets parameters

• Written in XML

• Starts roscore, if not already running

$ roslaunch <package_name> <filename>.launch

• Run a launch file

$ roslaunch <filename>.launch

• or navigate to the folder and run

node name executable name

(overrides name
that node assigns to
itself in its call to
rospy.init_node)

where to output
log messages
(screen or log file)

Contents

Intro ROS Ecosystem
• What is ROS?
• How to create/build

your packages.

• Fundamental concepts
• Basic commands
• Develop ROS nodes

Part 1 Part 2
Simulation

• Rviz
• Control a robot in

Gazebo.

Part 3

40

Rviz

41

$ rosrun rviz rviz

• 3D visualizer for ROS

• Visualizes sensor and state information

• Visualization markers

• Run Rviz

Rviz

42

Add display plugins

Frame in which
data are displayed

Gazebo Simulator

43

$ rosrun gazebo_ros gazebo

• 3D Physics-based simulator

• Run Gazebo

$ gazeboor standalone:

Gazebo Simulator

44

Example
Go-to-Goal Control

45

𝑢 𝑡 = 𝐾𝑃𝑒 𝑡 + 𝐾𝐼න𝑒 𝑡 𝑑𝑡 + 𝐾𝐷
𝑑𝑒(𝑡)

𝑑𝑡

Example – Go-to-Goal Control

46

• “Unicycle” model

• Robot state: 𝒙 = 𝑥 𝑦 𝜃 𝑇

• Control inputs:

𝑥

𝑦

𝒖 = 𝑣 𝜔 𝑇

𝜃

𝑣

𝜔

Goal

(𝑥, 𝑦)

PID Control

Linear
velocity

Angular
velocity

Angular velocity

Example – Go-to-Goal Control

47

v = 𝐾𝑣 (𝑥𝑔 − 𝑥)2+(𝑦𝑔 − 𝑦)2= 𝐾𝑣 ∙ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

2. Heading error:

1. Heading angle to the goal:

3. Compute angular velocity:

𝜃𝑔 = 𝑎𝑡𝑎𝑛2(𝑦𝑔 − 𝑦, 𝑥𝑔 − 𝑥)

𝜃
𝜃𝑔

Goal

𝜔 = 𝐾𝑝 ∙ 𝑒𝑟𝑟𝑜𝑟, 𝐾𝑝> 0

𝑒𝑟𝑟𝑜𝑟 = (𝜃𝑔 − 𝜃) = 𝑎𝑡𝑎𝑛2(sin(𝜃𝑔 − 𝜃), cos(𝜃𝑔 − 𝜃))

(𝑥, 𝑦)

(𝑥𝑔, 𝑦𝑔)

Linear velocity

𝑥

𝑦

Example – Go-to-Goal Control

48

• Navigate to 2 waypoints

• TurtleBot3 robot

controller

robot

/cmd_vel /odom

(Gazebo)

W1

W2Robot poseVelocity

Example – Go-to-Goal Control

49

nav_tutorial

CMakeLists.txtPackage.xml scripts

turtlebot_control_node.py

launch

world.launch

worlds

my_world.world

Example – Go-to-Goal Control

50

Example – Go-to-Goal Control

51

52

Why MoveIt?

By incorporating the latest advances in motion
planning, manipulation, 3D perception, kinematics,
control and navigation, MoveIt is state of the art
software for mobile manipulation.

Motion Planning

Collision Checking

Inverse Kinematics Control

3D PerceptionManipulation

53

ROS Resources

https://answers.ros.org/
https://robotics.stackexchange.com/

54

Wiki Installation

Tutorials Support forum

http://wiki.ros.org/ http://wiki.ros.org/ROS/Installation

http://wiki.ros.org/ROS/Tutorials
Recommended: Beginner Level 1-6, 11-14

https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

TurtleBot 3

Transforms

Launch files
http://wiki.ros.org/roslaunch/XML

http://wiki.ros.org/tf2

https://moveit.ros.org/

MoveIt

Ask ROS related questions here!

https://answers.ros.org/
https://robotics.stackexchange.com/
http://wiki.ros.org/
http://wiki.ros.org/ROS/Installation
http://wiki.ros.org/ROS/Tutorials
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
http://wiki.ros.org/roslaunch/XML
http://wiki.ros.org/tf2
https://moveit.ros.org/

ROS on Docker

55

• ROS image:
 osrf/ros:noetic-desktop-full

• Docker command for graphics support
on Windows:

docker run -it \
 --env="DISPLAY=$DISPLAY" \
 --env="QT_X11_NO_MITSHM=1" \
 --env="XAUTHORITY=$XAUTH" \
 --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" \
 --volume="$XAUTH:$XAUTH" \
 --name="ros-noetic" \
 osrf/ros:noetic-desktop-full

Useful VS Code extensions:
• Python, C/C++
• CMake
• Docker
• ROS

How To Attach Visual Studio Code To A Running
Docker Container

• Install the Docker extension on VS Code

Once you have the container running:

• Select the docker extension in VS Code (left pane)
• Right-click on your container
• Select “Attach Visual Studio Code”

Thank you!

56
CREDITS: This presentation template was created by Slidesgo,

including icons by Flaticon and illustrations by Storyset.

Any questions?

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr

	Slide 1
	Slide 2: Contents
	Slide 3: Contents
	Slide 4: What is ROS?
	Slide 5: What is ROS?
	Slide 6: Features/Benefits
	Slide 7: Versions
	Slide 8: Installation
	Slide 9: ROS Workspace
	Slide 10: ROS Workspace
	Slide 11: Configuring Your ROS Environment
	Slide 12: Building Your ROS Packages
	Slide 13: Installing Existing Packages
	Slide 14: Creating a ROS Package
	Slide 15: Info on ROS packages
	Slide 16: Contents
	Slide 17: ROS Nodes
	Slide 18: ROS Forms of Communication
	Slide 19: ROS Topics
	Slide 20: ROS Messages
	Slide 21: ROS Master
	Slide 22: Fun Quiz
	Slide 23: Question 1
	Slide 24: Question 2
	Slide 25: Question 3
	Slide 26: Question 4
	Slide 27: Example turtlesim
	Slide 28: Example - turtlesim
	Slide 29: Example - turtlesim – Node Info
	Slide 30: Example - turtlesim – Topic Info
	Slide 31: Example - turtlesim – rqt
	Slide 32: Example - turtlesim – rqt
	Slide 33: Example - turtlesim – Publish message
	Slide 34: Example Simple Publisher & Subscriber
	Slide 35: ROS Publisher & Subscriber (Python)
	Slide 36: Example - Simple Publisher & Subscriber
	Slide 37: Example - A Simple Publisher Node
	Slide 38: Example - A Simple Subscriber Node
	Slide 39: ROS Launch
	Slide 40: Contents
	Slide 41: Rviz
	Slide 42: Rviz
	Slide 43: Gazebo Simulator
	Slide 44: Gazebo Simulator
	Slide 45: Example Go-to-Goal Control
	Slide 46: Example – Go-to-Goal Control
	Slide 47: Example – Go-to-Goal Control
	Slide 48: Example – Go-to-Goal Control
	Slide 49: Example – Go-to-Goal Control
	Slide 50: Example – Go-to-Goal Control
	Slide 51: Example – Go-to-Goal Control
	Slide 52
	Slide 53
	Slide 54: ROS Resources
	Slide 55: ROS on Docker
	Slide 56: Thank you!

