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How to align outputs with human preferences?

Learning to summarize from human feedback

Nisan Stiennon* Long Ouyang* Jeff Wu* Daniel M. Ziegler* Ryan Lowe*
Chelsea Voss™ Alec Radford Dario Amodei Paul Christiano*
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© Collect human feedback

A Reddit post is
sampled from
the Reddit
TL;DR dataset.

Various policies
are used to
sample a set of
summaries.

Two summaries
are selected for
evaluation.

A human judges
which is a better
summary of the

post.
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© Train reward model

One post with
two summaries
judged by a
human are fed
to the reward
model.

The reward
model
calculates a
reward r for
each summary.

The loss is
calculated based
on the rewards
and human label,
and is used to
update the
reward model.
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© Train policy with PPO

A new post is
sampled from the
dataset.

The policy
generates a
summary for the
post.

The reward
model calculates
a reward for the
summary.

The reward is
used to update
the policy via
PPO.
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InstructGPT

Training language models to follow instructions
with human feedback
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Supervised Fine Tuning (SFT)

Step 1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old
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Some people went

to the moon...

Reward Modeling (RM)

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

o o

Explain gravity.. Explain war...

Moon is natural
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People went to
satellite of... the moon..
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Reinforcement Learning (RL)

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

https://openai.com/research/instruction-following
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Policy Optimization Methods

1.

2.

3.

Policy iteration

e Algorithm: Given a policy, estimate the value function. Then,
improve the policy. Repeat until convergence.

* Note: It’s model-based. So, we need to know the model! Not for
big state-spaces.

Gradient-free [

e Algorithm: Explore the policy space using BO, CEM, etc. to
maximize the total reward, considering it’s a black box

* Note: It’s model free. It can sometimes be sample inefficient and
sensitive to hyperparameters.

Policy gradient

* Algorithm: Get the gradient of the expected rewards w.r.t. policy
parameters

* Note: It's model free. It can be sample inefficient. Variance of
the gradient estimations needs to be controlled.
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Policy evaluation
Policy improvement

. Repeat

Consider a parameterized distrib
for ©
Get samples and evaluate the ob]

. Keep the elite samples (large

obj)

. Re-estimate the parameters of

the distrib and repeat

Do gradient update Vlogmy (ac|s.)A;

. Repeat


https://www.robots.ox.ac.uk/~raunakbh/AA228_HelperNote_CrossEntropyMethod.pdf

Policy Gradient Methods

1. Vanilla Policy Gradient

2. Trust Region Policy Optimization (TRPO)

3.

4. Proximal Policy Optimization-CLIP (PPO 2)

Proximal Policy Optimization (PPO 1)



Vanilla Policy Gradient (VPG)

Algorithm 1 Vanilla Policy Gradient Algorithm
1: Input: initial policy parameters p, initial value function parameters ¢
2: for k=0,1,2,... do REINFORCE (Monte Carlo
3:  Collect set of trajectories Dy = {7;} by running policy 7 = m(6x) in the environment. Policy Gradient)
4:  Compute rewards-to-go R;.
5. Compute advantage estimates, A, (using any method of advantage estimation) based
on the current value function Vj, . High variance in policies
6:  Estimate policy gradient as

( /\‘ |Dk| Z Z Vg lot,m) atlbt)|0 At

7€D;, t=0
7. Compute policy update, either using standard gradient ascent,
Ory1 = O + gy,

or via another gradient ascent algorithm like Adam. Policy network
8:  Fit value function by regression on mean-squared error:

2
= alo“lnm V(s ) \
bus = g o 1 3 > (vt - )’ A(s,) =+ V(&) - V()
typically via some gradient descent algorithm. Value network/Critic
9: end for (optional)

https://spinningup.openai.com/



Derivation

VQJ(WQ) = f,

VoJ(mg) = Vg E [R(7)]

T~TTg

_ v, / P(7]0)R(r)
_ / VoP(r|0)R(r)

— /P(T|9)V9 log P(7|60)R(T)

T

= E [Vylog P(7|0)R(T)]

T~

T~

t=0

Expand expectation
Bring gradient under integral

Log-derivative trick

Return to expectation form

i
Z Vologmg(as|si)R(T)| Expression for grad-log-prob

https://spinningup.openai.com/



Trust Region Policy Optimization (TRPO

(als) Conjugate gradients, need to
nais compute the natural

max E ATold (s, a

m rold g o (als) ( )] gradients/Hessians, inefficient

s.t. IEnold [KL[T[”T[Old]] <€
vrglaturalL(f(H)) — F_1V9£(f(9))

A Natural Policy Gradient

Sham Kakade
Gatsby Computational Neuroscience Unit
17 Queen Square, London, UK WCIN 3AR
http://www.gatsby.ucl.ac.uk
sham@gatsby.ucl.ac.uk

Abstract

We provide a natural gradient method that represents the steepest
descent direction based on the underlying structure of the param-
eter space. Although gradient methods cannot make large changes
in the values of the parameters, we show that the natural gradi-
ent is moving toward choosing a greedy optimal action rather than
just a better action. These greedy optimal actions are those that
would be chosen under one improvement step of policy iteration
with approximate, compatible value functions, as defined by Sut-
ton et al. [9]. We then show drastic performance improvements in
simple MDPs and in the more challenging MDP of Tetris.

NeurlPS'11



Recall: Importance sampling

(

Ex-plf(x)] = ) p(x)f(x)dx

1)
p() o f () dx

- [ 4z )(%f(x))

B p(x)
= Exg | [ )

;

Estimating the expectation by sampling from a different distribution.

https://github.com/RansML/RAS-Robust-Autonomous-Systems/blob/master/2 importance sampling.ipynb



https://github.com/RansML/RAS-Robust-Autonomous-Systems/blob/master/2_importance_sampling.ipynb

Recall: Iterative gradient-based optimization

e Line search methods: Find the direction of

improvement (steepest descent). Then decide
the step size along that direction. @
 |f f has a simple analytical form for the obj, finding
the best step size in each step is possible Opq < 0, + a,Vof(6,)

* Otherwise, decide an appropriate step size

* Trust region methods: Select the trust region
(i.e., max step size). Then find a point (i.e.,
direction) of improvement.



Proximal Policy Optimization (PPO)

VPG max (a|s)A™old(s, a) Sutton, NeurIPS'99
T

max E n(als) ATold (s, a)
mo ol e (als) '
TRPO Schulman et al. ICML'15
s.t. E”old [KL[T[”T[Old]] <€
n(als)
PPO 1 max E, ATold(s,a)| — :B(Enozd [KL[m||7o1q]] — €)
T Tola (als) Schulman et al. arXiv’'17

(als) m(als)
PPO 2 max [E min ATold (S, a), cli < ,1—€,1+ €| A™old (5; a)
m told [ (ﬂold(a|5) P To1a(als)



Proximal Policy Optimization (PPO)

Algorithm 1 PPO-Clip

1: Input: initial policy parameters 6, initial value function parameters ¢
2: for k=0,1,2,... do

3. Collect set of trajectories Dy = {7;} by running policy 7, = 7(6g) in the environment.
4:  Compute rewards-to-go R;.
5. Compute advantage estimates, A; (using any method of advantage estimation) based
on the current value function V, .
6:  Update the policy by maximizing the PPO-Clip objective:
71'0 ag|St .
Or+1 = arg  IAX o E E min ( 5t A% (84, a0), gle, AT (s54,a,)) | -
| k\ 7o, (ar]st)
T7ED t=0
typically via stochastic gradient ascent with Adam.
7. Fit value function by regression on mean-squared error:
2
Ori1 = cugmln g E ( ) \
|DA T -
€Dy t=0
typically via some gradient descent algorithm.
8: end for

https://spinningup.openai.com/



Supervised Fine Tuning (SFT)

Step 1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old
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Some people went

to the moon...

Reward Modeling (RM)

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old
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Explain gravity.. Explain war...

Moon is natural
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Reinforcement Learning (RL)

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

https://openai.com/research/instruction-following
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