

CSE 574 Planning and Learning Methods in Al

Ransalu Senanayake

www.ransalu.com

Methods for Designing Decision Agents

- Explicit programming
 - Anticipate all the different scenarios the agent might find
 - Explicitly program the agent
- Through supervised learning
 - It might be easier to show what to do than explicitly program E.g., Behavioral cloning
- Optimization
 - Designer specifies the space of possible strategies and a performance metric
 - Dynamic model should be known but not used to guide the search
- Planning
 - Assumes the model of the problem dynamics is known and it is used to help guide the search
- Reinforcement learning
 - We don't need to know the model

Class Logistics

- Teaching team
- Communication
- Prerequisites and infrastructure
- Learning outcomes
- Assessments and grading
- Schedule

https://lens-ai-lab.github.io/CSE574_Fall23/

Welcome to the <u>Laboratory for Learning Evaluation of autoNomous Systems (LENS Lab</u>). We are interested in operationalizing machine learning (ML) models in autonomous systems and robots. We delve deeper into critical questions:

- How can we explain black-box neural networks?
- How can we evaluate uncertainty of decisions?
- When and how do models fail?
- Are models fair and unbiased?
- Will a model perform effectively in new or changing environments?

We examine these questions before, during, and after deployment. These efforts not only aid engineers in debugging models but also assist legislative bodies in establishing legal and ethical guidelines.

Twitter https://twitter.com > ransalu

LinkedIn

https://www.linkedin.com > ransalu

Ransalu Senanayake (Instructor)

Yancheng Wang (Teaching Assistant)

Akshara Trichambaram (Instructional Assistant)

E-mail: ransalu@asu...

Office hours: Fri,

11:00 AM - 12:00 PM

Virtual: Meeting Link

E-mail:

ywan1053@asu...

Office hours: Wed,

2:00 PM - 3:00 PM

Virtual: Meeting Link

Office: BYENG 211

E-mail:

atricham@asu...

Office hours: Mon, 11:00 AM - 12:00 PM Virtual: Meeting Link

Suresh Kondepudi (Grader)

Harsh Mankodiya (Grader)

E-mail: nkondepu@asu... Office hours: Ad-hoc (post grading)

E-mail:

mankodi@asu...

Office hours: Ad-hoc

(post grading)

Communication

- General Concerns: For any other concerns related to assignments (such as late or missed submissions), accommodations, or any other issues, contact the IA via email. If you do not receive a response within 48 hours, contact the instructor.
- **Technical Questions**: For any technical questions regarding assignments, use Canvas. If you do not receive an answer within 48 hours, first contact the TA via email and subsequently the instructor.

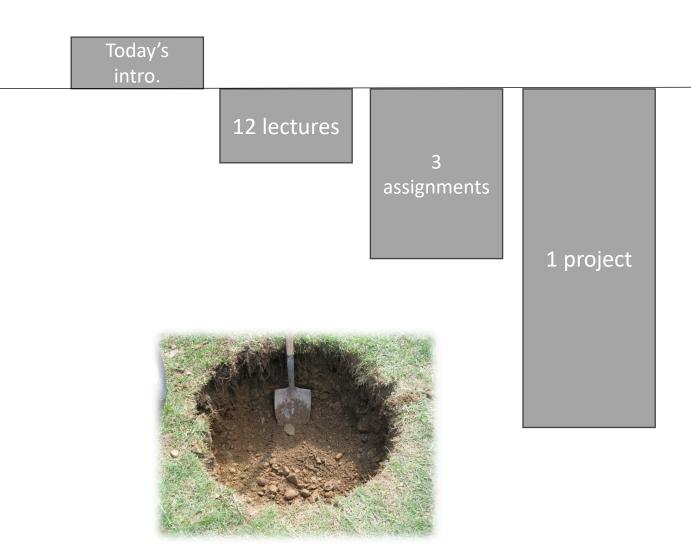
Note: You get extra credits for participating in Canvas discussions

Prerequisites

Highly recommended

- CSE 471: Introduction to AI
- CSE 475: Foundations of Machine Learning

Computing and Software


No labs. Three programming assignments and a project.

- A computer with Python (PyTorch)
- Sol/Agave supercomputer we'll send instructions later

Learning Outcomes

- Understand the role of planning and learning in AI-based decision-making systems
- Explain the fundamental concepts and techniques of AI planning and machine learning
- Analyze and compare different AI planning algorithms and approaches, highlighting their strengths and weaknesses
- Design and implement AI planning and learning techniques to develop intelligent systems capable of adaptive decision-making
- Stay up-to-date on recent advancements as well as challenges in AI planning and learning by reading and understanding research papers in the field
- Collaborate effectively in teams to solve AI-related challenges and complete practical projects
- Communicate technical concepts related to AI planning and learning clearly and persuasively, both in written reports and oral presentations

- Participation (5%)
- Three assignments (50%)
 - Homework component (30%)
 - In-class component (20%)
- Group project (45%)
 - Proposal (5%)
 - Progress presentation (10%)
 - Final presentation (15%)
 - Final written report (15%)
- Extra credits

- Participation (5%)
- Three assignments (50%)
 - Homework component (30%)
 - In-class component (20%)
- Group project (45%)
 - Proposal (5%)
 - Progress presentation (10%)
 - Final presentation (15%)
 - Final written report (15%)
- Extra credits

- In-person
- Zoom (in emergencies)

Watch live, AND

Submit a paragraph via Canvas

before 11.59pm on Sunday

• Must attend at least 11/14

- Participation (5%)
- Three assignments (50%)
 - Homework component (30%)
 - In-class component (20%)
- Group project (45%)
 - Proposal (5%)
 - Progress presentation (10%)
 - Final presentation (15%)
 - Final written report (15%)
- Extra credits

- Within 24 hours of the deadline, max grade = 90% of the total grade;
- Within 24 and 72 hours of the deadline, max grade = 50% of the total grade;
- Will not be accepted after 72 hours

Note: If you do submit a late homework, in addition to uploading to Canvas, send an email to both graders and IA with the homework as an attachment

- Participation (5%)
- Three assignments (50%)
 - Homework component (30%)
 - In-class component (20%)
- Group project (45%)
 - Proposal (5%)
 - Progress presentation (10%)
 - Final presentation (15%)
 - Final written report (15%)
- Extra credits

Final report:

- Within 24 hours of the deadline, max grade = 90% of the total grade;
- Within 24 and 72 hours of the deadline, max grade = 50% of the total grade;
- Will not be accepted after 72 hours

Note: If you do submit the report late, in addition to uploading to Canvas, send an email to both graders and IA with the report as an attachment

- Participation (5%)
- Three assignments (50%)
 - Homework component (30%)
 - In-class component (20%)
- Group project (45%)
 - Proposal (5%)
 - Progress presentation (10%)
 - Final presentation (15%)
 - Final written report (15%)
- Extra credits

This is a 16-week ongoing project. Start thinking about the project today. It cannot be completed within just a few weeks.

Final report:

- Within 24 hours of the deadline, max grade = 90% of the total grade;
- Within 24 and 72 hours of the deadline, max grade = 50% of the total grade;
- Will not be accepted after 72 hours

Note: If you do submit the report late, in addition to uploading to Canvas, send an email to both graders and IA with the report as an attachment

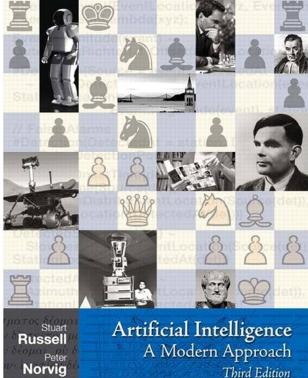
- Participation (5%)
- Three assignments (50%)
 - Homework component (30%)
 - In-class component (20%)
- Group project (45%)
 - Proposal (5%)
 - Progress presentation (10%)
 - Final presentation (15%)
 - Final written report (15%)
- Extra credits

- Active discussion on slack, or
- Remarkable project

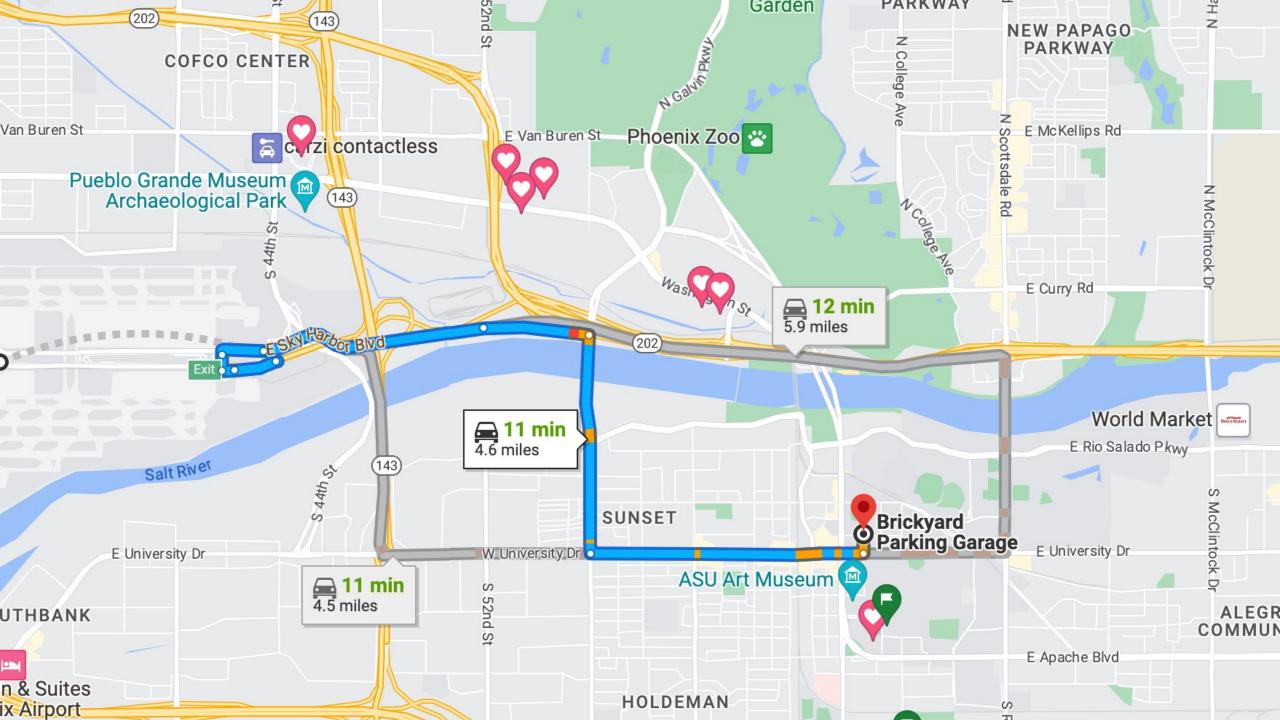
Week	Date	Theory
Week 1	08/18/2023	Introduction to decision-making
Week 2	08/25/2023	Myopic planning
Week 3	09/01/2023	Myopic planning
Week 4	09/08/2023	Non-myopic planning and reinforcement learning
Week 5	09/15/2023	Non-myopic planning and reinforcement learning
Week 6	09/22/2023	Imitation learning for decision-making
Week 7	09/29/2023	Imitation learning for decision-making
Week 8	10/06/2023	Human-in-the-loop planning
Week 9	10/13/2023	Human-in-the-loop planning
Week 10	10/20/2023	Task and motion planning
Week 11	10/27/2023	Task and motion planning
Week 12	11/03/2023	Multiagent planning and decision-making under uncertainty
$\frac{\text{Week } 13}{\text{Week } 13}$	$\frac{11}{10} \frac{2023}{20}$	Veterans Day (No class)
Week 14	11/17/2023	Classical planning and hierarchical planning/learning
Week 15	$\frac{11}{24}$	Thanksgiving (No class)
Week 16	12/01/2023	Project presentations

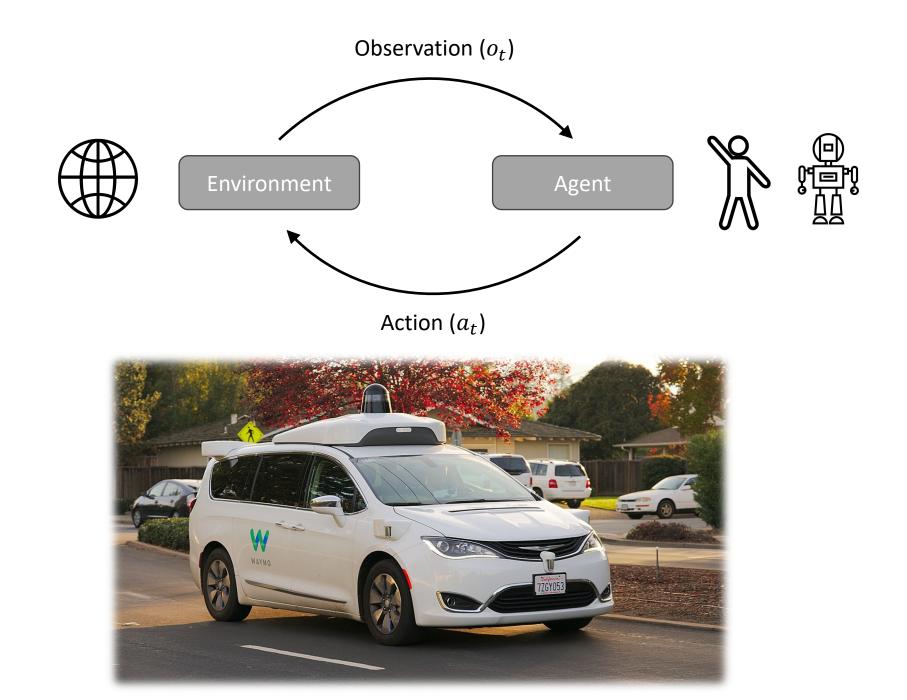
Textbooks

ALGORITHMS FOR DECISION MAKING



MYKEL J. KOCHENDERFER TIM A. WHEELER KYLE H. WRAY


Algorithms for Optimization



Mykel J. Kochenderfer and Tim A. Wheeler

A Modern Approach Third Edition Reinforcement Learning An Introduction second edition Richard S. Sutton and Andrew G. Barto

Different aspects of a plan

- A plan
 - A sequence of actions
 - A policy (state → action mapping)
- Objective/s, constraints, and preferences
- Guarantees
 - Optimality based on some metrics (e.g., shortest path, highest expected value)
 - Robustness against perturbations to the environment

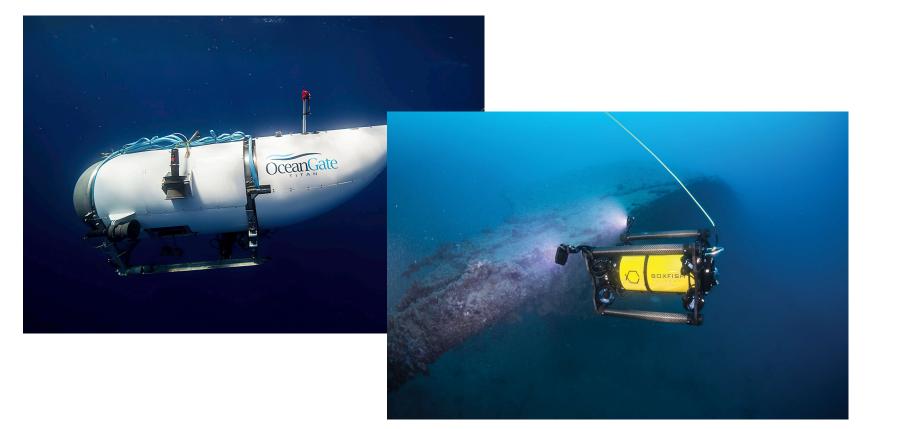
Terminology

- Input (sensors, symbolic/language inputs)
- Observations (fully (MDP), partially (belief state/POMDP))
- Policy (deterministic $\pi: S \to A$, stochastic. $\pi: S \times A \to [0,1]$)
- Multiagent, collaborative (with human explainable), hierarchical
- Planning, control theory, exploration, learning (supervised, unsupervised, semi-supervised, self-supervised, reinforcement), operations research/optimization, scheduling, constrained satisfaction

Utility Theory

- When we make a decision there are different outcomes $x \in X$
- Each outcome has a probability p
- Utility indicates how worth an outcome is (worthiness depends on our preferences). A utility function maps outcomes to a real number $u: X \rightarrow \mathbb{R}$

• The total utility is
$$\sum_{x \in X} p_x u(x)$$

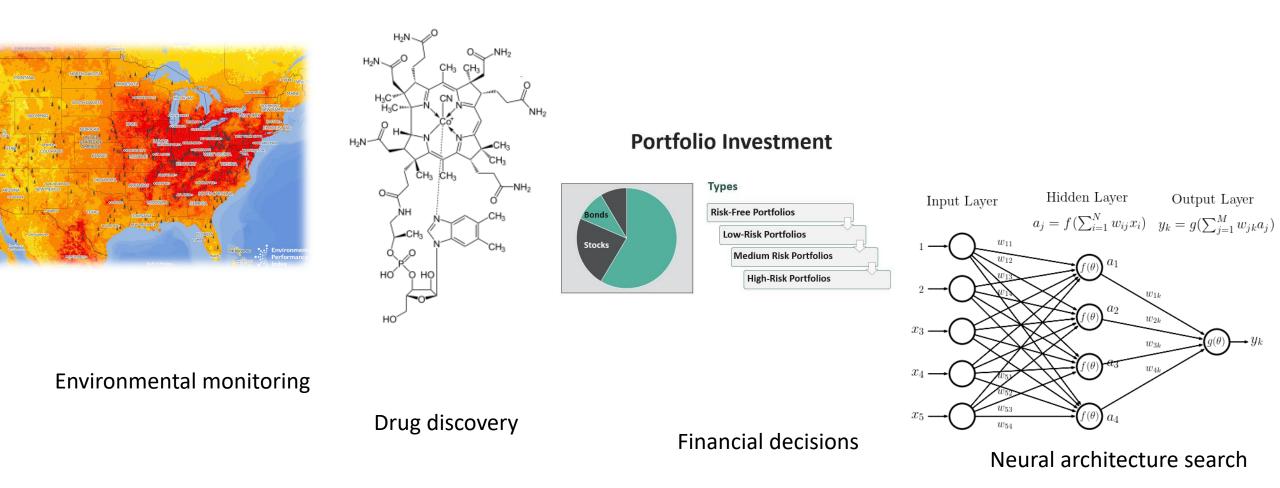

- If we observe o and take action a, we end up in state s' with the probability p(s'|o, a). Therefore, the expected utility is, $\mathbb{E}[u(a|o)] = \sum p(s'|o, a)u(s')$
- A rational agent chose the action that maximizes the expected utility

$$a^* = \operatorname*{argmax}_{a} \mathbb{E}[u(a|o)]$$

Week	Date	Theory	
Week 1	08/18/2023	Introduction to decision-making	
Week 2	08/25/2023	Myopic planning	
Week 3	09/01/2023	Myopic planning	
Week 4	09/08/2023	Non-myopic planning and reinforcement learning	
Week 5	09/15/2023	Non-myopic planning and reinforcement learning	
Week 6	09/22/2023	Imitation learning for decision-making	
Week 7	09/29/2023	Imitation learning for decision-making	
Week 8	10/06/2023	Human-in-the-loop planning	
Week 9	10/13/2023	Human-in-the-loop planning	
Week 10	10/20/2023	Task and motion planning	
Week 11	10/27/2023	Task and motion planning	
Week 12	11/03/2023	Multiagent planning and decision-making under uncertainty	
Week 13	$\frac{11}{10} \frac{2023}{20}$	Veterans Day (No class)	
Week 14	11/17/2023	Classical planning and hierarchical planning/learning	
Week 15	$\frac{11}{24}$	Thanksgiving (No class)	
Week 16	12/01/2023	Project presentations	

Myopic Planning

• E.g., Bayesian Optimization


Informative path planning

y

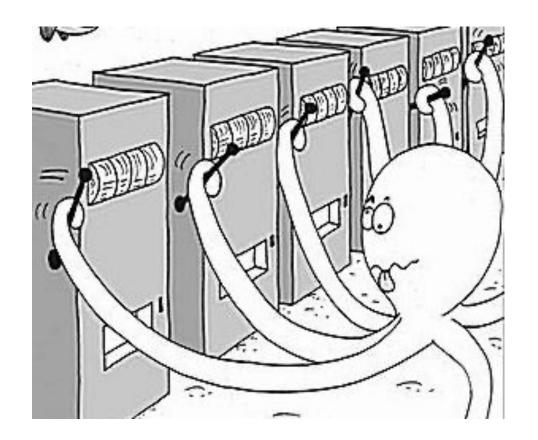
Х

Applications

The underlying process is costly to evaluate

Week	Date	Theory	
	08/18/2023 08/25/2023 09/01/2023	Assignment 1 - Myopic planning PyTorch tutorial	BoTorch

$$egin{aligned} f_1(\mathbf{x}) &= (1+g(\mathbf{x}_M))\cosig(rac{\pi}{2}x_1ig) \ f_2(\mathbf{x}) &= (1+g(\mathbf{x}_M))\sinig(rac{\pi}{2}x_1ig) \end{aligned}$$


where $g(\mathbf{x}) = \sum_{x_i \in \mathbf{x}_M} (x_i - 0.5)^2$, $\mathbf{x} \in [0, 1]^d$, and \mathbf{x}_M represents the last d - M + 1 elements of \mathbf{x} . Additionally, the C2-DTLZ2 problem uses the following constraint:

$$c(\mathbf{x}) = -\min\left[\min_{i=1}^{M}\left((f_i(\mathbf{x}) - 1)^2 + \sum_{j=1, j=i}^{M}(f_j^2 - r^2)
ight), \left(\sum_{i=1}^{M}\left((f_i(\mathbf{x}) - rac{1}{\sqrt{M}})^2 - r^2
ight)
ight)
ight] \geq 0$$

where $\mathbf{x} \in [0,1]^d$ and r=0.2.

Exploration vs exploitation

• Multi-arm bandits

Week	Date	Theory	
Week 1	08/18/2023	Introduction to decision-making	
Week 2	08/25/2023	Myopic planning	
Week 3	09/01/2023	Myopic planning	
Week 4	09/08/2023	Non-myopic planning and reinforcement learning	
Week 5	09/15/2023	Non-myopic planning and reinforcement learning	
Week 6	09/22/2023	Imitation learning for decision-making	
Week 7	09/29/2023	Imitation learning for decision-making	
Week 8	10/06/2023	Human-in-the-loop planning	
Week 9	10/13/2023	Human-in-the-loop planning	
Week 10	10/20/2023	Task and motion planning	
Week 11	10/27/2023	Task and motion planning	
Week 12	11/03/2023	Multiagent planning and decision-making under uncertainty	
Week 13	$\frac{11}{10} \frac{2023}{20}$	Veterans Day (No class)	
Week 14	11/17/2023	Classical planning and hierarchical planning/learning	
Week 15	$\frac{11}{24}$	Thanksgiving (No class)	
Week 16	12/01/2023	Project presentations	

Reinforcement Learning

- No supervision/labels, just a *reward*
- You see the consequences of your current decision many steps later
- Active data gathering (typically non-iid)
- We'll learn various RL algorithms

OpenAl Gym

stable-baselines

Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents

ICML 2022

Wenlong Huang¹, Pieter Abbeel¹, Deepak Pathak²*, Igor Mordatch³* (*equal advising) ¹University of California, Berkeley, ²Carnegie Mellon University, ³Google Brain

Browse Internet

Empty Dishwasher

Turn off TV

Organize Closet

Wash Face

Take off Shoes

Large Language Models (LLMs) such as GPT-3 and Codex can plan actions for embodied agents, even without any additional training.

Do As I Can, Not As I Say: Grounding Language in Robotic Affordances

Noah Brown* Byron David* Michael Ahn* Anthony Brohan* Yevgen Chebotar* Omar Cortes* Chelsea Finn* Keerthana Gopalakrishnan* Karol Hausman* Julian Ibarz* Chuyuan Fu* Alex Herzog* Daniel Ho* Jasmine Hsu* Brian Ichter* Alex Irpan* Eric Jang* Rosario Jauregui Ruano* Kyle Jeffrey* Sally Jesmonth* Nikhil Joshi* Yuheng Kuang* Kuang-Huei Lee* Linda Luu* Carolina Parada* Ryan Julian* Dmitry Kalashnikov* Sergey Levine* Yao Lu* Peter Pastor* Jornell Ouiambao* Kanishka Rao* Jarek Rettinghouse* Diego Reyes* Pierre Sermanet* Nicolas Sievers* Clayton Tan* Alexander Toshev* Vincent Vanhoucke* Fei Xia* Ted Xiao* Sichun Xu* Andy Zeng* Peng Xu* Mengyuan Yan*

* Authors listed in alphabetical order (see paper appendix for contribution statement).

Foundation Models for Decision Making: Problems, Methods, and Opportunities

Sherry Yang^{*1,2} Ofir Nachum¹ Yilun Du³ Jason Wei¹ Pieter Abbeel² Dale Schuurmans^{1,4}

¹Google Research, Brain Team, ²UC Berkeley, ³MIT, ⁴University of Alberta

2023

Mar

0

AI

CS.

Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks. When such models are deployed in real world environments, they inevitably interface with other entities and agents. For example, language models are often used to interact with human beings through dialogue, and visual perception models are used to autonomously navigate neighborhood streets. In response to these developments, new paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning. These paradigms leverage the existence of ever-larger datasets curated for multimodal, multitask, and generalist interaction. Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems that can interact effectively across a diverse range of applications such as dialogue, autonomous driving, healthcare, education, and robotics. In this manuscript, we examine the scope of foundation models for decision making, and provide conceptual tools and technical background for understanding the problem space and exploring new research directions. We review recent approaches that ground foundation models in practical decision making applications through a variety of methods such as prompting, conditional generative modeling, planning, optimal control, and reinforcement learning, and discuss common challenges and open problems in the field.

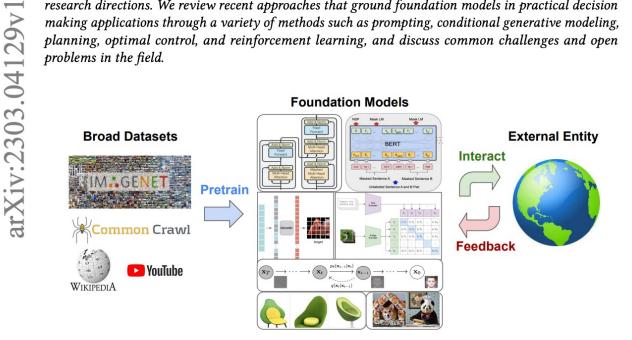


Fig. 1. Overview of foundation models for decision making. Foundation models pretrained on broad data are

Week	Date	Theory
Week 1	08/18/2023	Introduction to decision-making
Week 2	08/25/2023	Myopic planning
Week 3	09/01/2023	Myopic planning Robotics tutorial
Week 4	09/08/2023	Non-myopic planning and reinforcement learning
Week 5	09/15/2023	Non-myopic planning and reinforcement learning
Week 6	09/22/2023	Imitation learning for decision-making
Week 7	09/29/2023	Imitation learning for decision-making
Week 8	10/06/2023	Human-in-the-loop planning
Week 9	10/13/2023	Human-in-the-loop planning
Week 10	10/20/2023	Task and motion planning
Week 11	10/27/2023	Task and motion planning
Week 12	11/03/2023	Multiagent planning and decision-making under uncertainty
Week 13	$\frac{11}{10} \frac{2023}{20}$	Veterans Day (No class)
Week 14	11/17/2023	Classical planning and hierarchical planning/learning
$\frac{\text{Week } 15}{15}$	$\frac{11}{24}$	Thanksgiving (No class)
Week 16	12/01/2023	Project presentations

Week	Date	Theory
Week 1	08/18/2023	Introduction to decision-making
Week 2	08/25/2023	Myopic planning
Week 3	09/01/2023	Myopic planning
Week 4	09/08/2023	Non-myopic planning and reinforcement learning
Week 5	09/15/2023	Non-myopic planning and reinforcement learning
Week 6	09/22/2023	Imitation learning for decision-making
Week 7	09/29/2023	Imitation learning for decision-making
Week 8	10/06/2023	Human-in-the-loop planning
Week 9	10/13/2023	Human-in-the-loop planning
Week 10	10/20/2023	Task and motion planning
Week 11	10/27/2023	Task and motion planning
Week 12	11/03/2023	Multiagent planning and decision-making under uncertainty
Week 13	$\frac{11}{10} \frac{2023}{20}$	Veterans Day (No class)
Week 14	11/17/2023	Classical planning and hierarchical planning/learning
Week 15	$\frac{11}{24}$	Thanksgiving (No class)
Week 16	12/01/2023	Project presentations

• E.g., Behavioral cloning, DAgger

Week	Date	Theory	
Week 1	08/18/2023	Introduction to decision-making	
Week 2	08/25/2023	Myopic planning	
Week 3	09/01/2023	Myopic planning	
Week 4	09/08/2023	Non-myopic planning and reinforcement learning	
Week 5	09/15/2023	Non-myopic planning and reinforcement learning	
Week 6	09/22/2023	Imitation learning for decision-making	
Week 7	09/29/2023	Imitation learning for decision-making	
Week 8	10/06/2023	Human-in-the-loop planning	
Week 9	10/13/2023	Human-in-the-loop planning	
Week 10	10/20/2023	Task and motion planning	
Week 11	10/27/2023	Task and motion planning	
Week 12	11/03/2023	Multiagent planning and decision-making under uncertainty	
Week 13	$\frac{11}{10} \frac{2023}{20}$	Veterans Day (No class)	
Week 14	11/17/2023	Classical planning and hierarchical planning/learning	
Week 15	$\frac{11}{24}$	Thanksgiving (No class)	
Week 16	12/01/2023	Project presentations	

Default (GPT-3.5)

RA Is taking a grad level course on planning and learning methods in AI time consuming? Give me a short answer.

Yes, taking a graduate-level course on planning and learning methods in AI is typically timeconsuming due to the complex nature of the subject matter and the depth of understanding required. RL feedback

山豆

Training language models to follow instructions with human feedback

Long Ouyang*	Jeff Wu* Xu	ı Jiang* Diog	o Almeida*	Carroll L. W	ainwright*
Pamela Mishkin*	Chong Zhar	ng Sandhini A	garwal Kata	rina Slama	Alex Ray
John Schulman	Jacob Hiltor	n Fraser Kelt	on Luke Mi	ller Made	die Simens
Amanda	Askell [†]	Peter Welinde	er Pa	ul Christian	0 * [†]

Jan Leike*


Ryan Lowe*

OpenAI

InstructGPT: an instruction-following LLM that uses PPO

OpenAl Preference Demo

Week	Date	Theory		
Week 1	08/18/2023	Introduction to decision-making		
Week 2	08/25/2023	Myopic planning		
Week 3	09/01/2023	Myopic planning		
Week 4	09/08/2023	Non-myopic planning and reinforcement learning		
Week 5	09/15/2023	Non-myopic planning and reinforcement learning		
Week 6	09/22/2023	Imitation learning for decision-making		
Week 7	09/29/2023	Imitation learning for decision-making		
Week 8	10/06/2023	Human-in-the-loop planning		
Week 9	10/13/2023	Human-in-the-loop planning		
Week 10	10/20/2023	Task and motion planning		
Week 11	10/27/2023	Task and motion planning		
Week 12	11/03/2023	Multiagent planning and decision-making under uncertainty		
Week 13	$\frac{11}{10} \frac{2023}{20}$	Veterans Day (No class)		
Week 14	11/17/2023	Classical planning and hierarchical planning/learning		
Week 15	$\frac{11}{24}$	Thanksgiving (No class)		
Week 16	12/01/2023	Project presentations		

Week	Date	Theory
Week 1	08/18/2023	Introduction to decision-making
Week 2	08/25/2023	Myopic planning
Week 3	09/01/2023	Myopic planning
Week 4	09/08/2023	Non-myopic planning and reinforcement learning
Week 5	09/15/2023	Non-myopic planning and reinforcement learning
Week 6	09/22/2023	Imitation learning for decision-making
Week 7	09/29/2023	Imitation learning for decision-making
Week 8	10/06/2023	Human-in-the-loop planning
Week 9	10/13/2023	Human-in-the-loop planning
Week 10	10/20/2023	Task and motion planning
Week 11	10/27/2023	Task and motion planning
Week 12	11/03/2023	Multiagent planning and decision-making under uncertainty
Week 13	$\frac{11}{10} \frac{2023}{20}$	Veterans Day (No class)
Week 14	11/17/2023	Classical planning and hierarchical planning/learning
Week 15	$\frac{11}{24}$	Thanksgiving (No class)
Week 16	12/01/2023	Project presentations