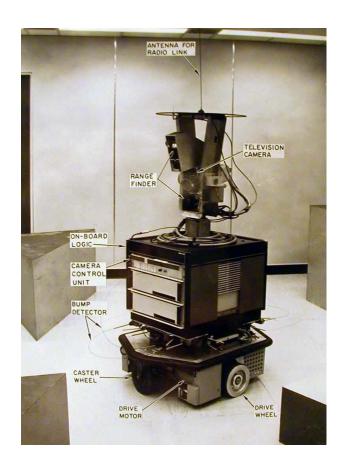


# CSE 574 Planning and Learning Methods in Al


Ransalu Senanayake

## Robot Motion Planning

## Shakey the Robot (1966-1972)

https://www.youtube.com/watch?v=7bsEN8mwUB8

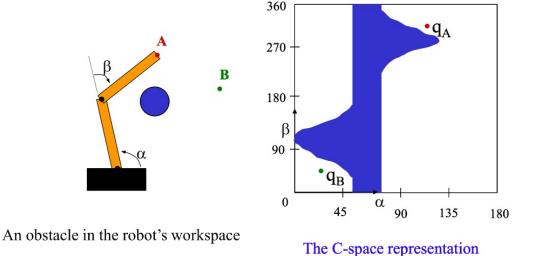
Used STRIP-based <u>A\* search</u>



#### Which space should we work in?

#### Task space

• A set of all possible end-effector poses


$$[x, y, z, \theta_1, \theta_2, \theta_3]$$

#### **Configuration space**

A set of of all possible c-configuration

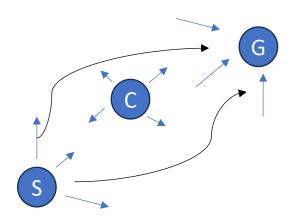
A vector of angles (revolute) and/or lengths (prismatic)

Fwd vs. inverse kinematics



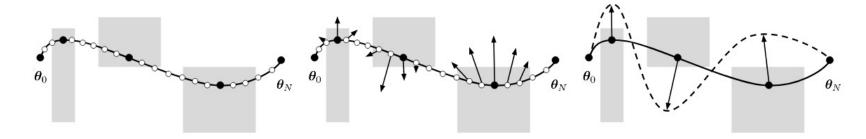
Howie Choset, 16-311, Spring 2018

of this obstacle...


#### Motion Planning Algorithms

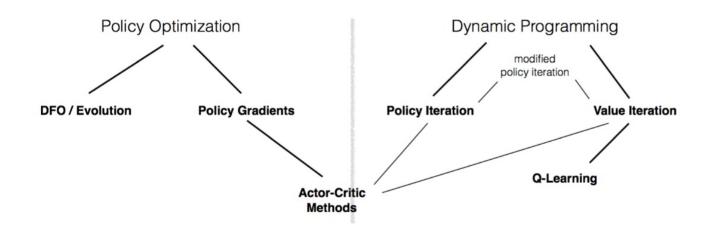
- 1. Naive methods such as Bug
  - Move towards the goal in a straight line. Follow the walls of the obstacles to avoid it, if meet any.
- 2. Naive Discretizations
  - Discretize the configuration space
    - e.g. grid/interval
  - Search using A\*, Dijkstra's, etc.
- 3. Sampling based techniques
  - PRM
  - Sampling-Based Roadmap of Trees (SRT)
  - Expansive-Spaces Tree planner (EST)
  - Rapidly Exploring Random Trees (RRT)
    - Growing a tree by randomly generating configurations and connecting a feasible closer line-of-sight edge to the nearest vertex
    - Good for generating a single plan (PRMs are for any place to any place path planning). Save the one-time path as you grow.
    - Bi-directional RRT

- Probabilistic road maps (PRMs)
  - Incrementally build the graph
    - Take random samples from the configuration space
    - Check if they are feasible or not
    - Connect nearby configurations
  - Find a good global set of routes that can be used for going from anywhere to anywhere (whereas RRT is a onetime plan to go from A to B)
  - Find the shortest path using A\*/Dijkstra's graph search




4. Artificial potential fields



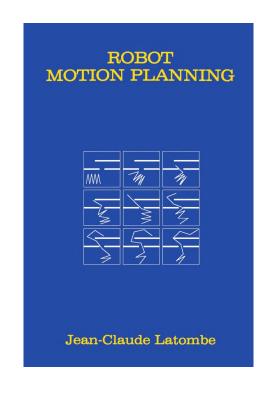

#### 5. Trajectory optimization

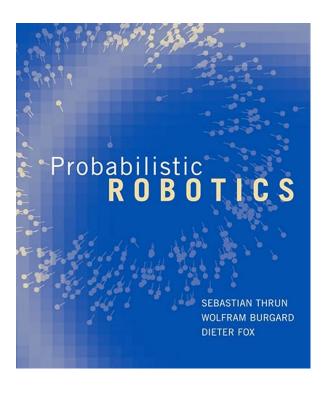
- Starts with a possibly infeasible trajectory (parameterized by way points)
- Optimize it to guarantee feasibility (no collisions) and smoothness/shortest

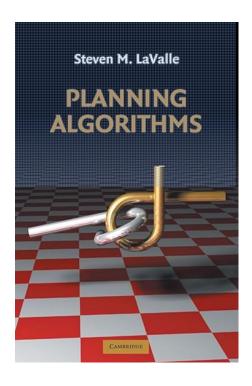


- E.g.
  - Covariant Hamiltonian Optimization for Motion Planning (CHOMP)
  - Stochastic Trajectory Optimization for Motion Planning (STOMP)
  - TrajOpt
  - Gaussian Process Motion Planning (GPMP)

- 6. Reward-based algorithms
- Dynamic programming
  - Dividing into small sub-problems
  - Using Bellman-Ford algorithm (finding the shortest path)
- Approximate dynamic programming (a.k.a. Reinforcement Learning) unknown exact model





Source: Peeter Abeel, ICML'17 tutorial


### Robot Motion Planning

https://moveit.ros.org/

Howie Choset's course at CMU





