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We have to define States, Actions,
Models, and Rewards

ransition



Lane Keeping and Changing

States: Position and velocity of all vehicles
Actions: Acceleration, lane change decision of the ego vehicle
Transition model: Based on position, velocity, and acceleration

Reward: Go as fast as possible keeping a safer distance




Merging into a Highway: States

The state of a given driving scene,

e R« i Yo e T

//' + M erge Point consists of the observable states Vg, .VT, Vi of the ego,
J trailing agent, and lead agent, respectively, and the latent
: cooperation level cy which governs the C-IDM for the trailing
o n EgO Vehicle agent. The observable vehicle state

@ Cooperative Agent Vi = (i, yi, vi, i, 6:)
consists of the ith vehicle’s position (z;, y;) on the simulator

n N on—Cooperative Agent map, longitudinal velocity v;, longitudinal acceleration v;,
and heading angle 6;.

L. Kruse, E. Yel, R. Senanayake, and M. Kochenderfer, Uncertainty-Aware Online Merge Planning with Learned Driver Behavior



Merging into a Highway: Actions

4 Merge Point
8 Ego Vehicle
I ® Cooperative Agent
£ ® Non-Cooperative Agent

At each time step, the ego takes an action a € A which
consists of a longitudinal jerk value. Planning occurs in jerk
space to produce smooth velocity profiles. Jerk values are
restricted to the range —0.6 m/s® < a < 0.6 m/s® to prevent
unrealistic or unsafe motion.



Merging into a Highway: Transition Model
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Merging into a Highway: Rewards

4 Merge Point
8 Ego Vehicle
I ® Cooperative Agent

8 Non-Cooperative Agent

R(s) = —A1||vE — Vret|| — A2||VE|| — A3Lpy,



Infrastructure-Aware Vehicle Control
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https://drive.google.com/file/d/1IMHuUOMwdDGIilpVGalFngcqaBIW8wohiAlB/view?usp=sharing

V.M. Dax, M. Kochenderfer, R. Senanayake, and U. Ibrahim, Infrastructure-Enabled Autonomy: An Attention Mechanism for Occlusion Handling


https://drive.google.com/file/d/1MHuOMwdDGiIpVGaIFngcqBlW8wohiAlB/view?usp=sharing

Infrastructure-Aware Vehicle Control

States: [x, y, speed v, heading 6, acceleration a, object type (car, bike, or pedestrian) with spatial
dimensions].

Actions: [pick a lane on the current road segment to travel along, pick a maximum of k
infrastructure sensors to query for additional perception data]

R = Wproximity * min(oadmin - dsafety) +
Wtime *V + Wis *Hsensors T
Weollision 1 (drmn = dcollision) v+
Werk J

with  dpin = min |sego — 5|
l

while rewarding speed. In simulation, we used wyj,e = 1.0,
Woroximity = —2.0, Wiz = —0.25, Wjerr = —1.0. Algorithm 2



Humanoid
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R = x; — 0.2||%]|, — 2(2z; — 0.7)
\_Y_} \ Y } \ ! |
position energy center of gravity
expenditure

https://gymnasium.farama.org/environments/mujoco/humanoid/



https://gymnasium.farama.org/environments/mujoco/humanoid/

Sparse rewards

We can only collect a meaningful reward when the agent successfully completes the task.

FNV NV VNN

Sparse reward: If we push the box into the red spot, reward = 1 and 0O, otherwise.

Dense reward: If we push the box into the red spot, reward = 1 and reward=1/distance(box,red), otherwise.

Intrinsic reward: Providing reward for curiosity-driven exploration (e.g., finding something novel) or information gain.
We might need extra systems/equipment to do this. Therefore, providing dense intrinsic reward is not always possible.

Hindsight Experience Replay (HER)

If the box is moved to a different position, rather than considering it as a failure, we use that experience by pretending
that we indeed intended to move to that position. This way, we don’t have to wait until many attempts to get a useful
signal to learn a policy.



Reward Hacking
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https://openai.com/research/faulty-reward-functions



https://openai.com/research/faulty-reward-functions

Rewards

Rewards
Hand-crafted Learn from data Human feedback modalities:
 Demonstrations (e.g., behavioral cloning)
* Interventions (e.g., DAgger)
. * Preference elicitation (e.g., InstructGPT)
Offline data collection Online human
involvement
Active training ine-tuning

HIL-RL RLHF



DeepRL from Human Preferences

1. The policy  interacts with the environment to produce a set of trajectories {71,...,7'}.
The parameters of 7 are updated by a traditional reinforcement learning algorithm, in order

to maximize the sum of the predicted rewards r; = 7(o¢, a;).

2. We select pairs of segments (o', 02) from the trajectories {7, ..., 7°} produced in step 1,

and send them to a human for comparison.

3. The parameters of the mapping 7 are optimized via supervised learning to fit the comparisons

collected from the human so far.

Use policy gradient methods because they are better at
handling non-stationary rewards: TRPO, A2C
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Christiano et al, 2017



PEBBLE: unsupervised PrE-training and preference-
Based learning via relaBeling Experience

Unsupervised Pre-Training
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Substantially reduce the
amount of human effort
required for HiL learning

https://sites.google.com/view/icml21pebble Lee et al, 2021



https://sites.google.com/view/icml21pebble

PEBBLE

Step 1 (reward learning): Learn a reward function that can lead to the desired behavior by getting
feedback from a teacher
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Step 2 (agent learning): Update the policy and Q-function using an off-policy RL algorithm with relabeling to
mitigate the effects of a non-stationary (i.e., changes during training) reward function




PEBBLE

Step O (unsupervised pre-training): We pre-train the policy only using intrinsic motivation to explore and collect
diverse experiences

Algorithm 1 EXPLORE: Unsupervised exploration

1: Initialize parameters of Qg and 7, and a replay buffer B < ()
2: for each iteration do
3:  for each timestep ¢ do
4: Collect s;+1 by taking a; ~ 74 (a:|st)
5: Compute intrinsic reward r;" < r*"*(s;) as in (5) rint(s;) = log(||s; — s¥||)
6: Store transitions B <— B U { (s, at,st+1,7:") }
7:  end for i
8:  for each gradient step do | Closest of k in
9: Sample minibatch {(s;, a;,s;41,7;" )}/ ~ B the buffer
10: Optimize £5%.;. in (1) and £ in (2) with respect to 6
and ¢
11:  end for
12: end for

13: return B, 7y




