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Extracting a Policy

• Brute force
• For every possible policy, compute the reward – not computationally feasible

• Dynamic programming (DP)
• DP: Breaking down a superproblem into small subproblems and solving 

iteratively. The optimality in subproblems guarantees the optimality in the 
superproblem. 
• If we know the model (MDP/transition dynamics and rewards), then we can 

use exact DP solve using value iteration or policy iteration. It’s not RL. 
• RL is sometimes called approximate dynamic programming. In RL, we either 

don’t assume a model (model-free RL) or learn the model through 
interactions (model-based RL).



Dynamic Programming for MDPs
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Dynamic Programming for MDPs
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Bellman Equation

𝑉 𝑠! = max"∈𝒜(𝑅 𝑠!, 𝑎 + 𝛾𝑉 𝑠!! ) 
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𝜋(𝑠"|𝑎)𝑄!(𝑠" , 𝑎)

𝑄!(𝑠" , 𝑎) = 2
&!"#∈𝒮

𝑝(𝑠"&|𝑠" , 𝑎)(𝑟 𝑠" , 𝑎 + 𝛾𝑉'() 𝑠"& )
Expected return of following action in state,
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Expected return in state, following policy  



Value Iteration
𝑉 𝑠* ← initialize (e.g., =0), for all 𝑠 ∈ 𝒮
for 𝑘 = [1:∞]
   //Improve the value
    for each state s

      𝑉' 𝑠" = max
#∈𝒜

∑&!&∈𝒮 𝑝(𝑠"&|𝑠" , 𝑎)(𝑟 𝑠" , 𝑎 + 𝛾𝑉'() 𝑠"& )

//If no more improvement, extract the policy and return

if 𝑉'() 𝑠" − 𝑉' 𝑠" < 𝑐𝑜𝑛𝑠𝑡. for all 𝑠 ∈ 𝒮

	 𝜋 𝑠 = argmax
#∈𝒜

2
&!&∈𝒮

𝑝(𝑠"&|𝑠" , 𝑎)(𝑟 𝑠" , 𝑎 + 𝛾𝑉'() 𝑠"& )

  return [𝜋 𝑠 ] for all 𝑠 ∈ 𝒮



Policy Iteration
𝜋 𝑠* ← initialize (e.g., =0), for all 𝑠 ∈ 𝒮
for 𝑘 = [1:∞]
    // Policy evaluation
    // Given the policy, compute value

for each state s
   𝑉'()

!'(# 𝑠" = ∑&!&∈𝒮 𝑝(𝑠"&|𝑠" , 𝜋'()(𝑠"))(𝑟 𝑠" , 𝜋'()(𝑠") + 𝛾𝑉'()
!'(# 𝑠"& )

      
// Policy improvement
// Using the newly computed value, compute a new policy 
for each state s

𝜋" 𝑠# = argmax
$∈𝒜

)
'!"∈𝒮

𝑝(𝑠#"|𝑠#, 𝑎)(𝑟 𝑠#, 𝑎 + 𝛾𝑉"()
*%&' 𝑠#" )

if 𝜋'() 𝑠" 	− 𝜋' 𝑠" < 𝑐𝑜𝑛𝑠𝑡. for all 𝑠 ∈ 𝒮
  return [𝜋' 𝑠 ] for all 𝑠 ∈ 𝒮



Policy iteration demo: http://www.cs.toronto.edu/~lcharlin/courses/60629/reinforcejs/gridworld_dp.html 

http://www.cs.toronto.edu/~lcharlin/courses/60629/reinforcejs/gridworld_dp.html


Thoughts

Q table (state-action table)

actions

st
at

es

Guarantees convergence
Value iteration can be slow if the state space is large

• Backgammon: 10^20 states
• Chess: 10^40 states
• Go: 10^70 states
• Robotics: continuous state/action spaces

How can we find the policy if the model is unknown? RL. 



Approximating the value/policy 

K-NN
Interpolation
Regression 
(linear with basis functions, DNN)

X=Grid locations y=Q values X=Grid locations
y=policy[
p(up), p(left), p(down),p(right)
]

Pick a state
Predict the its and its neighbors' values from the NN
What should be its value computed from neighbors according to the 
Bellman eq. (i.e., proxy ground truth)?
Backpropagate the error=MSE(NN prediction-Bellman computation)

Pick a trajectory 
Compute the values for each s
Gradient desc p such that higher values are proportional to the desired directions

Q network
Policy network



Deep Q-Network (DQN)

𝑄+ &!,#! = 𝑄' 𝑠" , 𝑎" + 𝛼(𝑟 𝑠" , 𝑎" + 𝛾.max(𝑄 𝑠"-), 𝑎" − 𝑄(𝑠" , 𝑎")))

Estimated optimal Old

Temporal difference (TD)

Q-learning





Deep Q-Network (DQN)
1. Query the current state. NN -> Q value
2. Select an action based on the Q value (use 𝜀-greedy)
3. Collect s’, r
4. Save <s,a,s’,r> in an experience buffer
5. Replay (ff the Q network) using several samples from the buffer
6. After several iterations clone the Q network in the target network






