
CSE 574 Planning and
Learning Methods in AI

Ransalu Senanayake

Week 5

Extracting a Policy

• Brute force
• For every possible policy, compute the reward – not computationally feasible

• Dynamic programming (DP)
• DP: Breaking down a superproblem into small subproblems and solving

iteratively. The optimality in subproblems guarantees the optimality in the
superproblem.
• If we know the model (MDP/transition dynamics and rewards), then we can

use exact DP solve using value iteration or policy iteration. It’s not RL.
• RL is sometimes called approximate dynamic programming. In RL, we either

don’t assume a model (model-free RL) or learn the model through
interactions (model-based RL).

Dynamic Programming for MDPs

+100

0 0

0 -10

0 0

0

0

0

+10+10

𝑉 𝑠! = max"∈𝒜 𝑉(𝑠!!)

𝒜

+10

[←= 0,	
 ↑= +10,

	 →= 0,
	 ↓= −10]

𝑉 𝑠! = max"∈𝒜(𝑅 𝑠!, 𝑎 + 𝛾𝑉 𝑠!!)

+10+9

+9

[←= −1,	
 ↑= +9,

	 →= −1,
	 ↓= −11]

← →
↓

↑
Rewards

-1 reward for step and 0.9 discount

Dynamic Programming for MDPs

+10+9

+9

Bellman Equation

𝑉 𝑠! = max"∈𝒜(𝑅 𝑠!, 𝑎 + 𝛾𝑉 𝑠!!)

𝑉! 𝑠" = 2
#∈𝒜

𝜋(𝑠"|𝑎)𝑄!(𝑠" , 𝑎)

𝑄!(𝑠" , 𝑎) = 2
&!"#∈𝒮

𝑝(𝑠"&|𝑠" , 𝑎)(𝑟 𝑠" , 𝑎 + 𝛾𝑉'() 𝑠"&)
Expected return of following action in state,
 following policy

Expected return in state, following policy

Value Iteration
𝑉 𝑠* ← initialize (e.g., =0), for all 𝑠 ∈ 𝒮
for 𝑘 = [1:∞]
 //Improve the value
 for each state s

 𝑉' 𝑠" = max
#∈𝒜

∑&!&∈𝒮 𝑝(𝑠"&|𝑠" , 𝑎)(𝑟 𝑠" , 𝑎 + 𝛾𝑉'() 𝑠"&)

//If no more improvement, extract the policy and return

if 𝑉'() 𝑠" − 𝑉' 𝑠" < 𝑐𝑜𝑛𝑠𝑡. for all 𝑠 ∈ 𝒮

	 𝜋 𝑠 = argmax
#∈𝒜

2
&!&∈𝒮

𝑝(𝑠"&|𝑠" , 𝑎)(𝑟 𝑠" , 𝑎 + 𝛾𝑉'() 𝑠"&)

 return [𝜋 𝑠] for all 𝑠 ∈ 𝒮

Policy Iteration
𝜋 𝑠* ← initialize (e.g., =0), for all 𝑠 ∈ 𝒮
for 𝑘 = [1:∞]
 // Policy evaluation
 // Given the policy, compute value

for each state s
 𝑉'()

!'(# 𝑠" = ∑&!&∈𝒮 𝑝(𝑠"&|𝑠" , 𝜋'()(𝑠"))(𝑟 𝑠" , 𝜋'()(𝑠") + 𝛾𝑉'()
!'(# 𝑠"&)

// Policy improvement
// Using the newly computed value, compute a new policy
for each state s

𝜋" 𝑠# = argmax
$∈𝒜

)
'!"∈𝒮

𝑝(𝑠#"|𝑠#, 𝑎)(𝑟 𝑠#, 𝑎 + 𝛾𝑉"()
*%&' 𝑠#")

if 𝜋'() 𝑠" 	− 𝜋' 𝑠" < 𝑐𝑜𝑛𝑠𝑡. for all 𝑠 ∈ 𝒮
 return [𝜋' 𝑠] for all 𝑠 ∈ 𝒮

Policy iteration demo: http://www.cs.toronto.edu/~lcharlin/courses/60629/reinforcejs/gridworld_dp.html

http://www.cs.toronto.edu/~lcharlin/courses/60629/reinforcejs/gridworld_dp.html

Thoughts

Q table (state-action table)

actions

st
at

es

Guarantees convergence
Value iteration can be slow if the state space is large

• Backgammon: 10^20 states
• Chess: 10^40 states
• Go: 10^70 states
• Robotics: continuous state/action spaces

How can we find the policy if the model is unknown? RL.

Approximating the value/policy

K-NN
Interpolation
Regression
(linear with basis functions, DNN)

X=Grid locations y=Q values X=Grid locations
y=policy[
p(up), p(left), p(down),p(right)
]

Pick a state
Predict the its and its neighbors' values from the NN
What should be its value computed from neighbors according to the
Bellman eq. (i.e., proxy ground truth)?
Backpropagate the error=MSE(NN prediction-Bellman computation)

Pick a trajectory
Compute the values for each s
Gradient desc p such that higher values are proportional to the desired directions

Q network
Policy network

Deep Q-Network (DQN)

𝑄+ &!,#! = 𝑄' 𝑠" , 𝑎" + 𝛼(𝑟 𝑠" , 𝑎" + 𝛾.max(𝑄 𝑠"-), 𝑎" − 𝑄(𝑠" , 𝑎")))

Estimated optimal Old

Temporal difference (TD)

Q-learning

Deep Q-Network (DQN)
1. Query the current state. NN -> Q value
2. Select an action based on the Q value (use 𝜀-greedy)
3. Collect s’, r
4. Save <s,a,s’,r> in an experience buffer
5. Replay (ff the Q network) using several samples from the buffer
6. After several iterations clone the Q network in the target network

