

CSE 574 Planning and Learning Methods in Al

Ransalu Senanayake

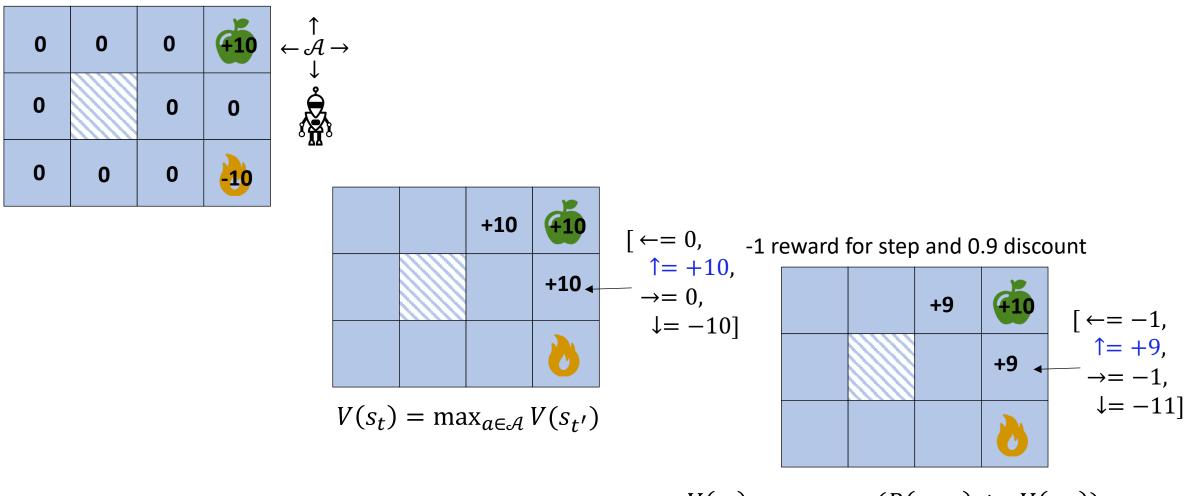
Week 5

Extracting a Policy

- Brute force
 - For every possible policy, compute the reward not computationally feasible
- Dynamic programming (DP)
 - DP: Breaking down a superproblem into small subproblems and solving iteratively. The optimality in subproblems guarantees the optimality in the superproblem.
 - If we know the *model* (MDP/transition dynamics and rewards), then we can use exact DP solve using *value iteration* or *policy iteration*. It's not RL.
 - RL is sometimes called approximate dynamic programming. In RL, we either don't assume a model (*model-free RL*) or learn the model through interactions (*model-based RL*).

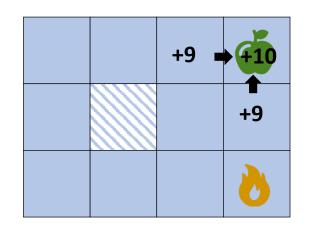
Dynamic Programming for MDPs

Rewards



 $V(s_t) = \max_{a \in \mathcal{A}} (R(s_t, a) + \gamma V(s_{t'}))$

Dynamic Programming for MDPs



Bellman Equation

 $V(s_t) = \max_{a \in \mathcal{A}} (R(s_t, a) + \gamma V(s_{t'}))$

$$V^{\pi}(s_t) = \sum_{a \in \mathcal{A}} \pi(s_t | a) Q^{\pi}(s_t, a)$$

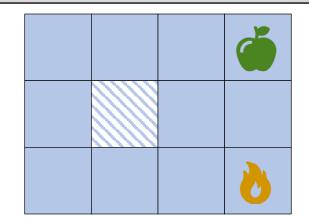
Expected return in state, following policy

$$Q^{\pi}(s_t, a) = \sum_{s_{t+1 \in S}} p(s_{t'}|s_t, a)(r(s_t, a) + \gamma V_{k-1}(s_{t'}))$$

Expected return of following action in state, following policy

Value Iteration

$$\begin{split} V(s_0) &\leftarrow \text{ initialize (e.g., =0), for all } s \in S \\ \text{for } k = [1:\infty] \\ &//\text{Improve the value} \\ \text{for each state } s \\ &V_k(s_t) = \max_{a \in \mathcal{A}} \sum_{s_{t' \in S}} p(s_{t'}|s_t, a)(r(s_t, a) + \gamma V_{k-1}(s_{t'})) \\ &//\text{If no more improvement, extract the policy and return} \\ \text{if } ||V_{k-1}(s_t) - V_k(s_t)|| < \text{const. for all } s \in S \\ &\pi(s) = \operatorname*{argmax}_{a \in \mathcal{A}} \sum_{s_{t' \in S}} p(s_{t'}|s_t, a)(r(s_t, a) + \gamma V_{k-1}(s_{t'})) \\ &\text{return } [\pi(s)] \text{ for all } s \in S \end{split}$$



Policy Iteration

 $\pi(s_0) \leftarrow \text{initialize (e.g., =0)}, \text{ for all } s \in S$ for $k = [1:\infty]$ // Policy evaluation // Given the policy, compute value for each state s $V_{k-1}^{\pi_{k-1}}(s_t) = \sum_{s_{t'\in S}} p(s_{t'}|s_t, \pi_{k-1}(s_t))(r(s_t, \pi_{k-1}(s_t)) + \gamma V_{k-1}^{\pi_{k-1}}(s_{t'}))$ // Policy improvement // Using the newly computed value, compute a new policy for each state s $\pi_k(s_t) = \operatorname*{argmax}_{a \in \mathcal{A}} \sum_{s,t=1}^{s} p(s_{t'}|s_t, a)(r(s_t, a) + \gamma V_{k-1}^{\pi_{k-1}}(s_{t'}))$ if $||\pi_{k-1}(s_t) - \pi_k(s_t)|| < const.$ for all $s \in S$ return $[\pi_k(s)]$ for all $s \in S$

Policy iteration demo: <u>http://www.cs.toronto.edu/~lcharlin/courses/60629/reinforcejs/gridworld_dp.html</u>

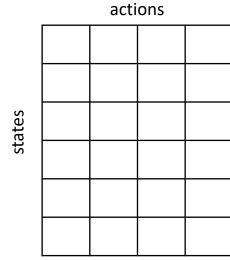
Thoughts

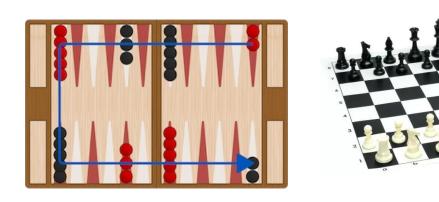
Guarantees convergence

Value iteration can be slow if the state space is large

- Backgammon: 10^20 states
- Chess: 10^40 states
- Go: 10^70 states
- Robotics: continuous state/action spaces

Q table (state-action table)



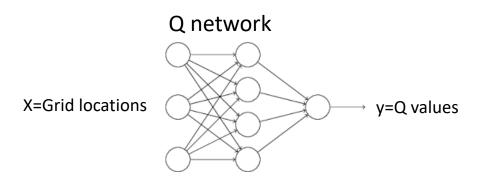


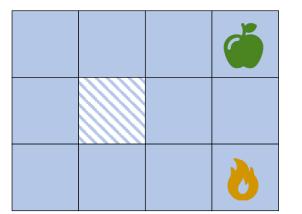
How can we find the policy if the model is unknown? RL.

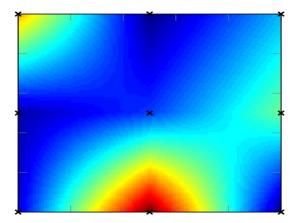
table (state-action tab

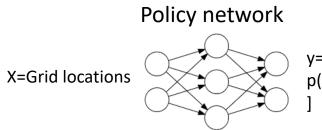
Approximating the value/policy

K-NN Interpolation Regression (linear with basis functions, DNN)









y=policy[p(up), p(left), p(down),p(right)

Pick a state

Predict the its and its neighbors' values from the NN What should be its value computed from neighbors according to the Bellman eq. (i.e., proxy ground truth)?

Backpropagate the error=MSE(NN prediction-Bellman computation)

Pick a trajectory

Compute the values for each s

Gradient desc p such that higher values are proportional to the desired directions

Deep Q-Network (DQN)

Q-learning

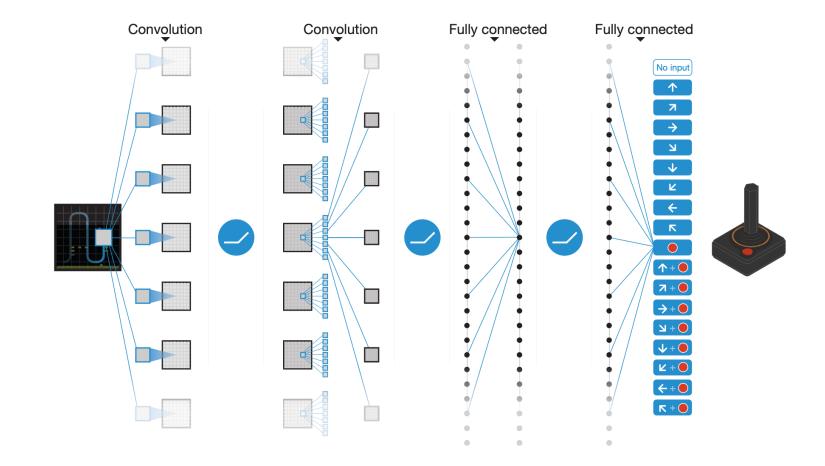
nature

Explore content ~	About the journal $ \!$	Publish with us $ ightarrow $	Subscribe
nature > letters > article			
Published: 25 February 2015			
Human-level control through deep reinforcement			
learning			
Volodymyr Mnih, Koray Kavukcuoglu ⊠, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg & Demis Hassabis ⊠ Nature 518, 529–533 (2015) Cite this article			
476k Accesses 12k Citations 1546 Altmetric Metrics			
			Estimated optimal

Estimated optimal Old

$$Q'^{(s_t,a_t)} = Q_k(s_t,a_t) + \alpha(r(s_t,a_t) + \gamma \cdot \max(Q(s_{t+1},a_t) - Q(s_t,a_t)))$$

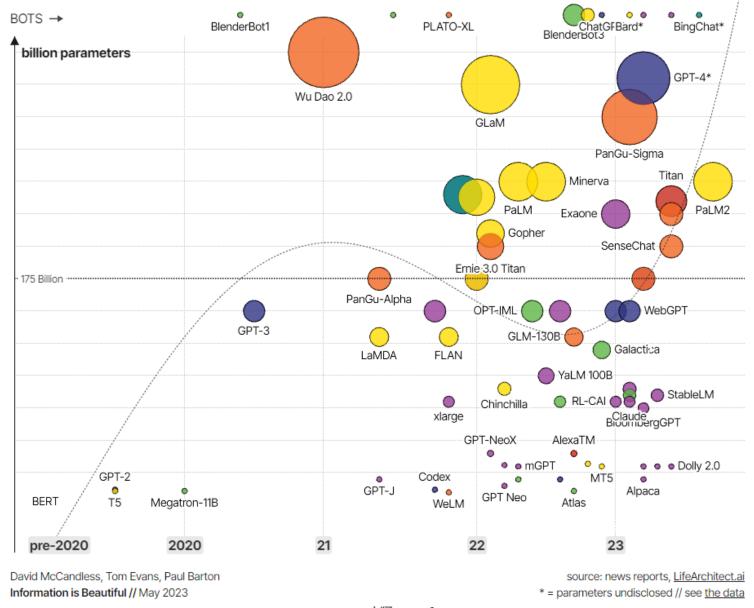
Temporal difference (TD)



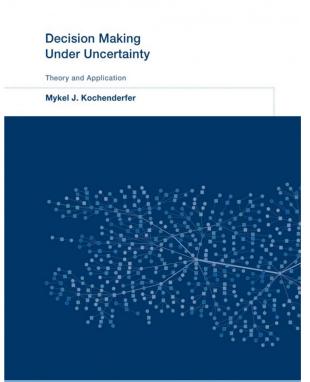
Deep Q-Network (DQN)

- 1. Query the current state. NN -> Q value
- 2. Select an action based on the Q value (use ε -greedy)
- 3. Collect s', r
- 4. Save <s,a,s',r> in an **experience buffer**
- 5. Replay (ff the Q network) using several samples from the buffer
- 6. After several iterations clone the **Q network** in the **target network**

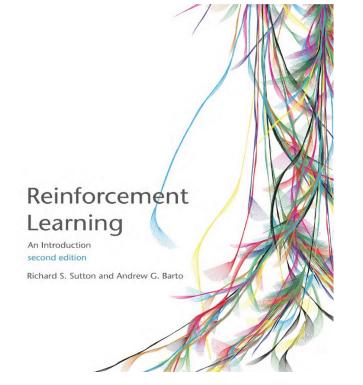
Amazon-owned OpenAl OpenAl



made with VIZ**sweet**



MIT LINCOLN LABORATORY SERIES



Reinforcement Learning and Optimal Control

