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Supervised Learning vs. Reinforcement 
Learning

• Datasets (use static datasets vs. collect data trail & error)
• Data distribution (iid vs. action dependent states)
• Labels
• Objective (maximum likelihood vs maximum expected reward)



Markov Decision Process

ℳ: {𝒮,𝒜, 𝒯, 𝑟} 



Markov Decision Process: State Space

• There are 11 states. Here, a state is simply a position in the world.

Start state

Not a state

Goal state

Robot will die if it
 comes to this state

(𝑠 ∈ 𝒮) 



Markov Decision Process: Action Space

• The robot can take 4 actions (move up, down, left, or right). It can 
move to only 4 neighboring cells. 

• Discrete time (step 1, step 2, step 3, …)
• Markov property: Next state depends only on the current state and the action 

you take at the current state

Andrey Markov

(a ∈ 𝒜) 



Markov Decision Process: Action Space

Fully 
observable

Partially 
observable

Without action Markov Chain HMM

With action MDP POMDP

(a ∈ 𝒜) 

𝑠!

𝑟!

𝑎!

𝑠"

𝑟"

𝑎"

𝑠#

𝑟#

𝑎#



Markov Decision Process: Rewards

• A reward is received after transitioning from previous state to new 
state by taking a particular action 𝑟(𝑠!"#, 𝑠! , 𝑎!)	= r(next state, current 
state, current action). We can simply consider 𝑟 𝑠! , 𝑎! .

• Rewards can be negative or positive. Rewards can be engineered or 
learned. 

𝑟(𝑠, 𝑎)

(𝑟) 

𝑟: 𝑆×𝒜 → ℝ	



Markov Decision Process: Rewards

• The objective is to maximize the cumulative reward. To this end, we 
engineer rewards as, E.g.,

1. If we go to the goal from any cell by taking whatever the action, r=+10 
2. If we go to the dead zone from any cell by taking whatever the action, r=-10 
3. No reward for any other action in any state

+10-10

0 0

0 0

0 0

0

0

0



Markov Decision Process: Transition Operator

• Or the transition dynamics or the environment
• Transition dynamics and/or reward function
 constitutes a model

+10-10

0 0

0 0

0 0

0

0

0

𝑝(𝑠!"#|𝑠! , 𝑎!) 
𝑠!

𝑟!

𝑎!

𝑠"

𝑟"

𝑎"

𝑠#

𝑟#

𝑎#



Reinforcement Learning: Policy

• Our objective is to find a policy (𝜋: 𝑆 → 𝒜) that maximizes the cumulative 
sum of rewards.
•  If we have a policy, then we know what actions to take at any state.
• A deterministic policy maps states to actions (if we take action 𝑎 at 𝑠, we’ll 

end up in 𝑠!"#)
• A stochastic policy map states to distributions of actions (if we take action 
𝑎! at 𝑠!, we’ll end up in various 𝑠!"#, each with a different probability)
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Reinforcement Learning: Policy

and find the policy

𝜋$ 𝜏 = 𝜋$ 𝑠#, 𝑎#, … , 𝑠% , 𝑎% = 𝑝(𝑠#)-
!&#
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𝜋$ 𝑎! 𝑠! 𝑝(𝑠!"#|𝑠! , 𝑎!)
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The RL loop

Fit a model/
Estimate the return Improve the policy

Generate samples
(run the policy)

On-policy: Use our current policy for sampling. Hence, if we update the policy at iteration t, we have to resample. 
Hence, sample inefficient. E.g., SARSA
Off-policy: Use samples by other means (e.g., previously collected samples, randomly/greedily collected samples, 
etc.). Hence, sample efficient. We might even not need the policy at all. E.g., Q-learning

Optimize the policy directly
or through gradient of E[Σr]

Get Q or the model

Some resources adapted from Chelsea Finn’s CS224R Reinforcement Learning



Q-function vs. value function

• Q-function: Expected return of taking an action at a given state

• Value-function: Expected return of an action
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Model-based vs. model-free RL

Model-based: Learn the model then plan to find the policy. Planning algorithms such as MCTS or dynamic 
programming can be used for the second stage. If we learn a good model, then planning is sample efficient. But it’s 
difficult to learn a good model for complex environments. 
E.g., trajectory optimization (LQR), MPC, PILCO (or NN based), MCTS, Cross Entropy Method, Dyna

Model-free: Instead of learning an explicit model, it interacts with the environment to collect state-action pair data 
to learn a policy. Sample inefficient because it has to interact a lot. This is especially true for high-dimensional 
state/action spaces. E.g.,
• value-based (estimate the value) e.g., Q-learning/DQN, DDQN, Dueling DQN, SARSA
• policy gradient methods (learn a parameterized policy) e.g., REINFORCE , TRPO, PPO
• Actor-Critic methods (combines value based with policy-based by having an actor network and a policy network 

e.g., A2C, TRPO
• Entropy-regularized methods (for better exploration) e.g., SAC, TRPO
• For handling sparse rewards E.g., HER

A model represents how the environment behaves  i.e., 𝑝(𝑠%&"|𝑠% , 𝑎%) and/or 𝑟(𝑠% , 𝑎%) E.g., rules of a game, physics, 
human interactions



Policy Iteration for Pong

https://www.ponggame.org/ 
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DQN



TRPO



PPO

https://openai.com/blog/openai-baselines-ppo/

https://openai.com/blog/openai-baselines-ppo/


DeepMind Navigating Obstacles



DeepMind AlphaGo Computer Player
• AlphaZero, AlphaGo Zero (2017), AlphaGo Master, AlphaGo 

Lee, AlphaGo Fan
• Uses neural networks and Monte Carlo Tree Search (MCTS)



Playing DOTA2 OpenAI Five (2018)



OpenAI Dexterous Manipulation



Wayve.ai Learning to Drive in a Day



OpenAI ChatGPT

InstructGPT



Some resources adapted from Chelsea Finn’s CS 224R Reinforcement 
Learning


