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Multi-Arm Bandits




Multi-Arm Bandits Solutions

Exploitation only
Exploration only (greedy)
e-first (exploration-first)
e-greedy
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e-greedy

N arm that maximizes reward, with probability 1 — €
e = random arm, with probability €

 What is the effect of €?
* Fixed € (e.g., e=10%), decreasing €, adaptive €, etc.
* Can we utilize more information than the average?



UCB1 Algorithm

Randomly pull arms k={1,..,K} several times (n) to get an initial
estimate of expected rewards Ty

For iteration t=1,..,T

. _ 2 logN
Play machine K¢y =cn1nnax(ﬁc+cx Ogt)

ng
end

Expected regret

Initial phase (figuring out the reward from each arm): O(y/KTlogT)

1
Later phase (when we get to know about arms/d73,): (9 (Z 5_10gT)
kOTk

o1y, is the reward gap of the kth arm compared to the arm with the best reward



Bayesian Bandits and Thompson Sampling

Assume parameterized distributions for the prior and likelihood

For T 1terations
Compute the posterior p(8|D) < p(D|6)p(8)
Sample parameters from each arm
Compute the reward for each sample
Pick the arm that maximizes the reward
Append the dataset with D={ (arm, reward) }

end

* Non-informative/uniform/flat/broad prior. Conjugate prior.
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Multi-Objective Optimization
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Multi-Objective Optimization

* A choice is Pareto optimal if it is impossible to improve in one
objective without worsening at least one other objective

f2

minimize f1, f2

f1

*wfi(x) + (1 —w)fa(x)
e Possible solutions

e What if we maximize

* Hypervolume



Multi-Objective Bayesian Optimization (MOBO)

Differentiable Expected Hypervolume Improvement
for Parallel Multi-Objective Bayesian Optimization
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