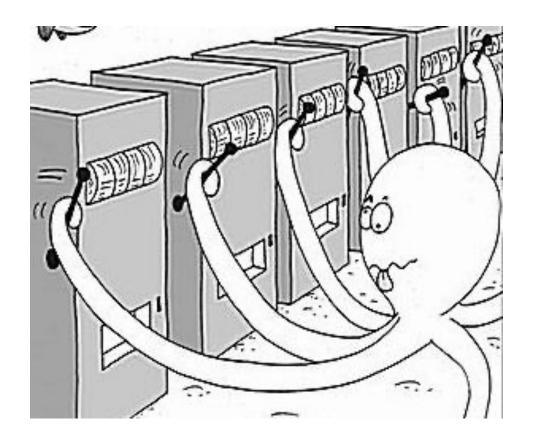


CSE 574 Planning and Learning Methods in Al

Ransalu Senanayake

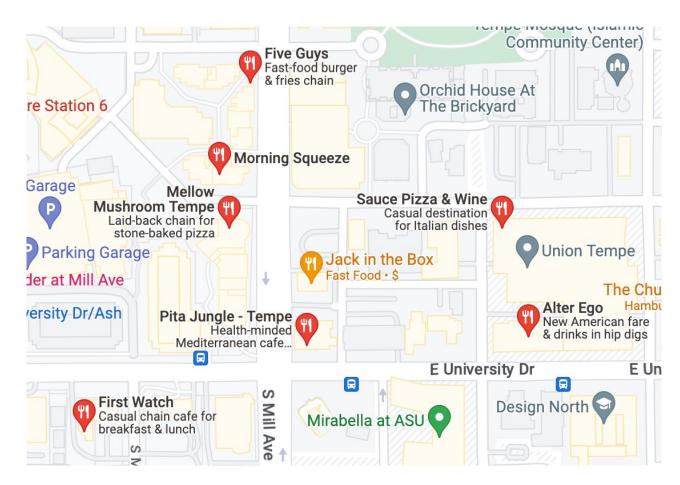
Week 3

Multi-Arm Bandits



Multi-Arm Bandits Solutions

- Exploitation only
- Exploration only (greedy)
- ϵ -first (exploration-first)
- ϵ -greedy
- UCB



c-greedy

 $\operatorname{arm}_{t} = \begin{cases} \operatorname{arm that maximizes reward, with probability } 1 - \epsilon \\ \operatorname{random arm, with probability } \epsilon \end{cases}$

- What is the effect of ϵ ?
- Fixed ϵ (e.g., ϵ =10%), decreasing ϵ , adaptive ϵ , etc.
- Can we utilize more information than the average?

UCB1 Algorithm

Randomly pull arms $\mathbf{k}{=}\left\{\mathbf{1},...,\mathbf{K}\right\}$ several times (n) to get an initial estimate of expected rewards \bar{r}_k

For iteration **t=1,...,T**

Play machine
$$k_{t+1} = argmax\left(\bar{r}_k + \alpha \sqrt{\frac{2\log N_t}{n_k}}\right)$$

end

Expected regret

Initial phase (figuring out the reward from each arm): $O(\sqrt{KT\log T})$

Later phase (when we get to know about arms/ δr_k):

$$\mathcal{O}\left(\sum_{k}\frac{1}{\delta r_{k}}\log T\right)$$

 δr_k is the reward gap of the kth arm compared to the arm with the best reward

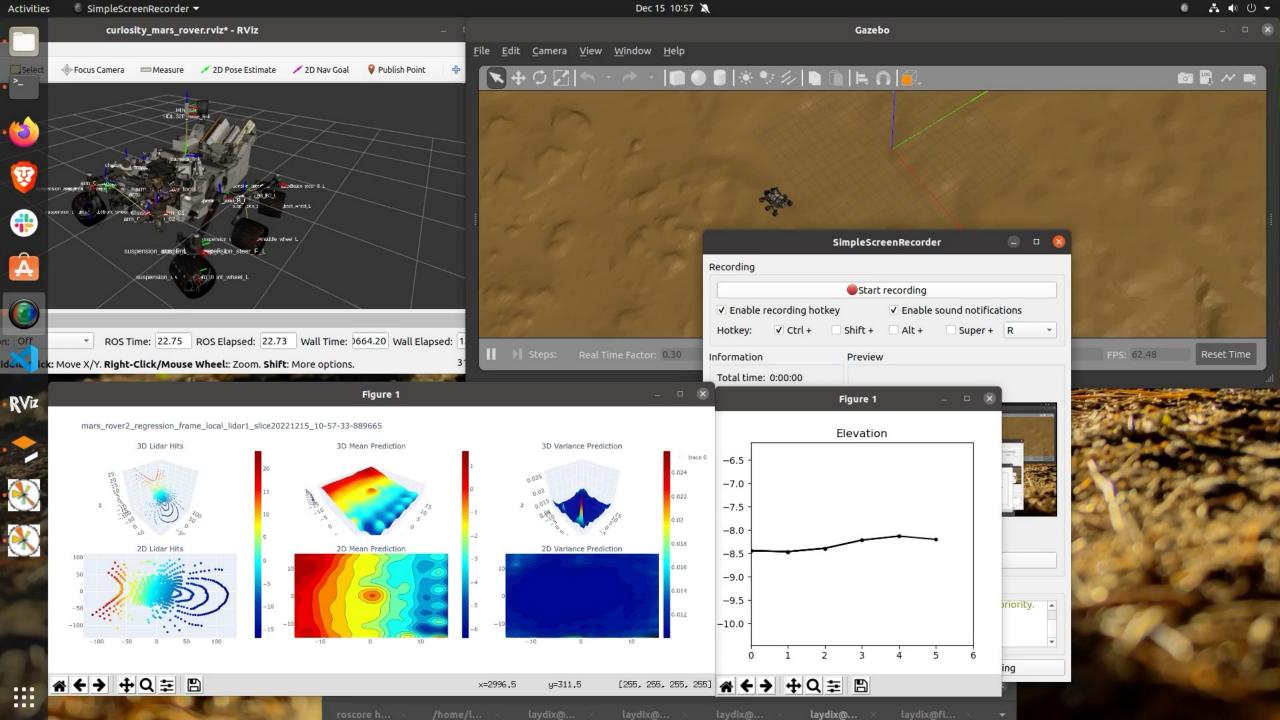
Bayesian Bandits and Thompson Sampling

Assume parameterized distributions for the prior and likelihood

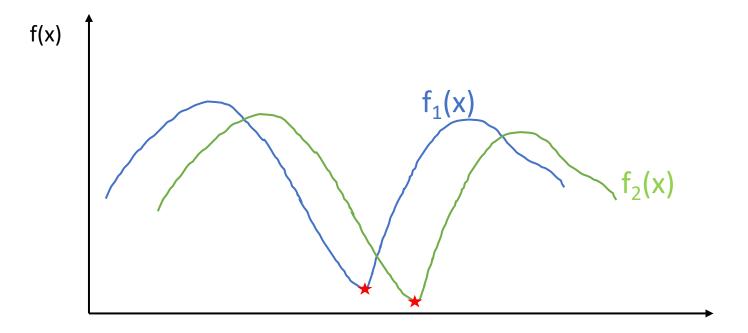
For T iterations

Compute the posterior $p(\theta|D) \propto p(D|\theta)p(\theta)$ Sample parameters from each arm Compute the reward for each sample Pick the arm that maximizes the reward Append the dataset with D={(arm, reward)} end

• Non-informative/uniform/flat/broad prior. Conjugate prior.



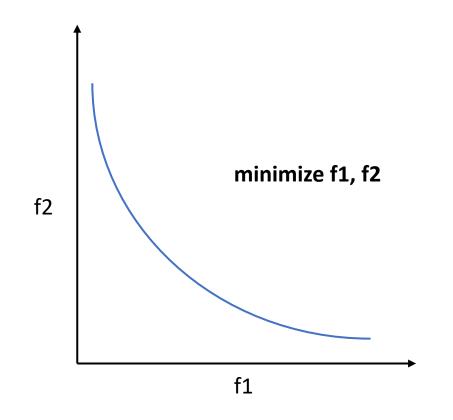
Multi-Objective Optimization



Х

Multi-Objective Optimization

• A choice is *Pareto optimal* if it is impossible to improve in one objective without worsening at least one other objective



•
$$wf_1(x) + (1 - w)f_2(x)$$

- Possible solutions
- What if we maximize
- Hypervolume

Multi-Objective Bayesian Optimization (MOBO)

Differentiable Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Optimization

Samuel Daulton Facebook sdaulton@fb.com Maximilian Balandat Facebook balandat@fb.com Eytan Bakshy Facebook ebakshy@fb.com