

CSE 574 Planning and Learning Methods in Al

Ransalu Senanayake

www.ransalu.com

Week 2

Week	Date	Theory
Week 1	08/18/2023	Introduction to decision-making
Week 2	08/25/2023	Myopic planning
Week 3	09/01/2023	Myopic planning
Week 4	09/08/2023	Non-myopic planning and reinforcement learning
Week 5	09/15/2023	Non-myopic planning and reinforcement learning
Week 6	09/22/2023	Imitation learning for decision-making
Week 7	09/29/2023	Imitation learning for decision-making
Week 8	10/06/2023	Human-in-the-loop planning
Week 9	10/13/2023	Human-in-the-loop planning
Week 10	10/20/2023	Task and motion planning
Week 11	10/27/2023	Task and motion planning
Week 12	11/03/2023	Multiagent planning and decision-making under uncertainty
Week 13	$\frac{11}{10} \frac{2023}{20}$	Veterans Day (No class)
Week 14	11/17/2023	Classical planning and hierarchical planning/learning
$\frac{\text{Week } 15}{15}$	$\frac{11}{24}$	Thanksgiving (No class)
Week 16	12/01/2023	Project presentations

Bayesian Optimization (BO)

- We want to find the *global minimum* of an <u>expensive</u> to evaluate function
- We don't know much about the function but we can evaluate it
 - We don't know about 1st and 2nd derivates. Hence, gradient methods (e.g., Newton/quasi-newton method) is not possible. BO is *derivative free*.
 - We don't know if the function has a special structure (e.g., convex). Hence, we can't use convex optimization techniques. BO is a *black-box optimization* technique.
- Myopic planning (i.e., one-step lookahead)
- A.k.a. surrogate optimization

Applications

Bayesian Optimisation for Intelligent Environmental Monitoring

Roman Marchant and Fabio Ramos

Abstract—Environmental Monitoring (EM) is typically performed using sensor networks that collect measurements in predefined static locations. The possibility of having one or more autonomous robots to perform this task increases versatility and reduces the number of necessary sensor nodes to cover the same area. However, several problems arise when making use of autonomous moving robots for EM. The main challenges This paper presents a novel approach for active sampling, using *Bayesian Optimisation* (BO) [2–4]. The BO framework allows a mobile robot to choose sensing locations taking into account the uncertainty of the understanding of the phenomenon, the expected value of the studied variable (e.g. temperature, humidity, ambient light), and the cost to travel

Applications

auto-sklearn in one image

Google Cloud

Hyperparameter tuning in Cloud Machine Learning Engine using Bayesian Optimization

August 10, 2017

Puneith Kaul Software Engineering Manager

The BO algorithm

Minimize the black-box function by taking samples

1) stay closer to the current best (exploitation)

2) sample from more *uncertain* areas (exploration)

Probability of Improvement (PI)

For now, assume an oracle gives us $\hat{\mu}$ and $\hat{\sigma}$. Later, we'll learn how to build the oracle using a Gaussian process.

► X

• What is the effect of $\hat{\mu}$ and $\hat{\sigma}$ on $a_{PI}(x)$?

Expected Improvement (EI) $u(x) = \max(f_* - f, 0)$ $a_{EI}(x) = \mathbb{E}[u(x)|x, \mathcal{X}] = \int_{-\infty}^{f_*} (f_* - f) \mathcal{N}(f; \hat{\mu}, \hat{\sigma}) df.$ $= (f_* - \hat{\mu}) \Phi(f_*; \hat{\mu}, \hat{\sigma}) + \hat{\sigma} \mathcal{N}(f_*, \hat{\mu}, \hat{\sigma})$ $= (f_* - \hat{\mu}) \Phi\left(\frac{f_* - \hat{\mu}}{\hat{\sigma}}\right) + \hat{\sigma} \mathcal{N}\left(\frac{f_* - \hat{\mu}}{\hat{\sigma}}\right)$

 $\mathcal{X} \leftarrow \mathcal{X} \cup \{ \operatorname*{argmax}_{x} a_{PI}(x) \}$

- What is $a_{EI}(x)$ if $x \in \mathcal{X}$?
- What is the effect of $\hat{\mu}$ and $\hat{\sigma}$ on $a_{EI}(x)$? Exploration vs. exploitation

Upper Confidence Bound (GP-UCB)

- What is $a_{GP-UCB}(x)$ when $\alpha \to 0$?
- What is $a_{GP-UCB}(x)$ when $\alpha \to \infty$

How to estimate the uncertainty? i.e. How to build the oracle?

- Aleatoric vs. epistemic uncertainty
- Distributions over parameters
- Bayesian neural networks feasible?
- Gaussian processes the good, bad, and the ugly
 - Scalability with the number of points
 - Choice of kernel and learning its hyperparameters

Gaussian Process (GP) for Regression

- A Bayesian non-parametric technique
- We have to learn the hyperparameters of the GP
- Can we work with high dimensional data?

Gaussian process prediction $\hat{\mu}(x) = k(x, X) \left(K(X, X) + \sigma_{noise}^{-1} I \right)^{-1} \mathbf{y}$ $\hat{\sigma}(x) = k(x, x) - k(x, X) \left(K(X, X) + \sigma_{noise}^{-1} I \right)^{-1} k(X, x)$

Gaussian process fitting/learning

Learning a GP means, we learn it's hyperparameters. For instance, for a squared-exponential kernel,

$$k(x_1, x_2) = \alpha^2 \exp\left(-\frac{||x_1 - x_2||_2^2}{l^2}\right)$$

we have to learn α^2 and l^2 .

The BO algorithm – In practice

Start with a few random points (hint: $-\sqrt{d}$ where d is the number of dimensions of x) for N iterations Fit the GP with the current set of samples Evaluate the point to sample using the **acquisition function** and fitted GP's $\hat{\mu}$ and $\hat{\sigma}$ Append the dataset with the new sample/minimum (hint: Once in a while append the dataset with a random sample for better exploration) end

- It's challenging when, say, d > 30
- If we know the black-box model has sharp transitions, then we can use a Mattern kernel

Other topics

- Is BO just an infinite-arm (every x) bandit?
- Multi-fidelity BO
- Multi-objective BO
- Multi-task BO
- Parallel BO
- Constrained BO
- Submodular optimization
- Theoretical aspects
 - E.g., Using GP-UCB, we can show that it can achieve the global optimum

BAYESIAN OPTIMIZATION

ROMAN GARNETT

ALGORITHMS FOR DECISION MAKING

MYKEL J. KOCHENDERFER TIM A. WHEELER KYLE H. WRAY Gaussian Processes for Machine Learning

Carl Edward Rasmussen and Christopher K. I. Williams